IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v224y2018icp717-730.html
   My bibliography  Save this article

Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents

Author

Listed:
  • Barbarelli, S.
  • Florio, G.
  • Amelio, M.
  • Scornaienchi, N.M.

Abstract

An innovative system for recovering energy from tidal currents is proposed. The system is composed of a blade immersed in sea water and connected to a vertical bar which, moving up and down under the action of the sea current, transfers energy to a double effect pump. The latter feeds a pressurized reservoir providing a water flow rate, at suitable pressure, to a hydraulic turbine. The basic configuration involves a four-bar linkage connecting the vertical bar and the piston pump. The system can be employed in all the sites whose seabed quickly deepens and whose tidal currents are parallel to the coast. In this paper, the authors provide a methodology for designing the system, once found the bathymetry of the chosen site and the field of variation of the tidal current velocities, taking into account the morphology of the costal boundary layer. A case study, developed for the Calabrian site of Punta Pezzo (Strait of Messina – Italy), demonstrated the technical feasibility.

Suggested Citation

  • Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M., 2018. "Preliminary performance assessment of a novel on-shore system recovering energy from tidal currents," Applied Energy, Elsevier, vol. 224(C), pages 717-730.
  • Handle: RePEc:eee:appene:v:224:y:2018:i:c:p:717-730
    DOI: 10.1016/j.apenergy.2018.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918307220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo Basso, Gianluigi & Nastasi, Benedetto & Astiaso Garcia, Davide & Cumo, Fabrizio, 2017. "How to handle the Hydrogen enriched Natural Gas blends in combustion efficiency measurement procedure of conventional and condensing boilers," Energy, Elsevier, vol. 123(C), pages 615-636.
    2. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M. & Cutrupi, A. & Lo Zupone, G., 2015. "Transients analysis of a tidal currents self-balancing kinetic turbine with floating stabilizer," Applied Energy, Elsevier, vol. 160(C), pages 715-727.
    3. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    4. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J. & Ward, Sophie L., 2015. "Characterising the spatial and temporal variability of the tidal-stream energy resource over the northwest European shelf seas," Applied Energy, Elsevier, vol. 147(C), pages 510-522.
    5. Elhanafi, Ahmed & Macfarlane, Gregor & Fleming, Alan & Leong, Zhi, 2017. "Experimental and numerical investigations on the hydrodynamic performance of a floating–moored oscillating water column wave energy converter," Applied Energy, Elsevier, vol. 205(C), pages 369-390.
    6. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    7. Barbarelli, S. & Florio, G. & Amelio, M. & Scornaienchi, N.M. & Cutrupi, A. & Lo Zupone, G., 2014. "Design procedure of an innovative turbine with rotors rotating in opposite directions for the exploitation of the tidal currents," Energy, Elsevier, vol. 77(C), pages 254-264.
    8. López-Ruiz, Alejandro & Bergillos, Rafael J. & Raffo-Caballero, Juan M. & Ortega-Sánchez, Miguel, 2018. "Towards an optimum design of wave energy converter arrays through an integrated approach of life cycle performance and operational capacity," Applied Energy, Elsevier, vol. 209(C), pages 20-32.
    9. Sánchez, M. & Carballo, R. & Ramos, V. & Iglesias, G., 2014. "Energy production from tidal currents in an estuary: A comparative study of floating and bottom-fixed turbines," Energy, Elsevier, vol. 77(C), pages 802-811.
    10. Ma, Penglei & Wang, Yong & Xie, Yudong & Zhang, Jianhua, 2018. "Analysis of a hydraulic coupling system for dual oscillating foils with a parallel configuration," Energy, Elsevier, vol. 143(C), pages 273-283.
    11. Lo Zupone, Giacomo & Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Cutrupi, Antonino, 2017. "Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison," Applied Energy, Elsevier, vol. 185(P2), pages 1292-1302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvio Barbarelli & Vincenzo Pisano & Mario Amelio, 2022. "Development of a Predicting Model for Calculating the Geometry and the Characteristic Curves of Pumps Running as Turbines in Both Operating Modes," Energies, MDPI, vol. 15(7), pages 1-28, April.
    2. Silvio Barbarelli & Benedetto Nastasi, 2021. "Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment," Energies, MDPI, vol. 14(19), pages 1-20, September.
    3. Liu, Zhen & Qu, Hengliang & Shi, Hongda, 2020. "Energy-harvesting performance of a coupled-pitching hydrofoil under the semi-passive mode," Applied Energy, Elsevier, vol. 267(C).
    4. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    5. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    6. Williams S. Ebhota & P. Y. Tabakov, 2019. "Power Supply and the Role Hydropower Plays in Sub-Saharan Africa s Modern Energy System and Socioeconomic Wellbeing," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 347-363.
    7. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    2. Ward, Sophie L. & Robins, Peter E. & Lewis, Matt J. & Iglesias, Gregorio & Hashemi, M. Reza & Neill, Simon P., 2018. "Tidal stream resource characterisation in progressive versus standing wave systems," Applied Energy, Elsevier, vol. 220(C), pages 274-285.
    3. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    4. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    5. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    6. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    7. Vazquez, A. & Iglesias, G., 2016. "Grid parity in tidal stream energy projects: An assessment of financial, technological and economic LCOE input parameters," Technological Forecasting and Social Change, Elsevier, vol. 104(C), pages 89-101.
    8. Silvio Barbarelli & Benedetto Nastasi, 2021. "Tides and Tidal Currents—Guidelines for Site and Energy Resource Assessment," Energies, MDPI, vol. 14(19), pages 1-20, September.
    9. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    10. Yazicioglu, Hasan & Tunc, K.M. Murat & Ozbek, Muammer & Kara, Tolga, 2016. "Simulation of electricity generation by marine current turbines at Istanbul Bosphorus Strait," Energy, Elsevier, vol. 95(C), pages 41-50.
    11. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    12. Thiébaut, Maxime & Quillien, Nolwenn & Maison, Antoine & Gaborieau, Herveline & Ruiz, Nicolas & MacKenzie, Seumas & Connor, Gary & Filipot, Jean-François, 2022. "Investigating the flow dynamics and turbulence at a tidal-stream energy site in a highly energetic estuary," Renewable Energy, Elsevier, vol. 195(C), pages 252-262.
    13. Zhang, Yuquan & Peng, Bin & Zheng, Jinhai & Zheng, Yuan & Tang, Qinghong & Liu, Zhiqiang & Xu, Junhui & Wang, Yirong & Fernandez-Rodriguez, Emmanuel, 2023. "The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition," Energy, Elsevier, vol. 283(C).
    14. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    15. Khojasteh, Danial & Chen, Shengyang & Felder, Stefan & Glamore, William & Hashemi, M. Reza & Iglesias, Gregorio, 2022. "Sea level rise changes estuarine tidal stream energy," Energy, Elsevier, vol. 239(PE).
    16. Lo Zupone, Giacomo & Amelio, Mario & Barbarelli, Silvio & Florio, Gaetano & Scornaienchi, Nino Michele & Cutrupi, Antonino, 2017. "Lcoe evaluation for a tidal kinetic self balancing turbine: Case study and comparison," Applied Energy, Elsevier, vol. 185(P2), pages 1292-1302.
    17. Vazquez, A. & Iglesias, G., 2015. "LCOE (levelised cost of energy) mapping: A new geospatial tool for tidal stream energy," Energy, Elsevier, vol. 91(C), pages 192-201.
    18. Khojasteh, Danial & Lewis, Matthew & Tavakoli, Sasan & Farzadkhoo, Maryam & Felder, Stefan & Iglesias, Gregorio & Glamore, William, 2022. "Sea level rise will change estuarine tidal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    20. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:224:y:2018:i:c:p:717-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.