IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v212y2020ics0360544220318867.html
   My bibliography  Save this article

Freestanding flexible multilayered Sulfur–Carbon nanotubes for Lithium–Sulfur battery cathodes

Author

Listed:
  • Lee, Won Yeol
  • Jin, En Mei
  • Cho, Jung Sang
  • Kang, Dong-Won
  • Jin, Bo
  • Jeong, Sang Mun

Abstract

A freestanding, flexible, multilayered sulfur–carbon nanotube film (MLSC) cathode was prepared for use in lithium–sulfur (Li–S) batteries without a metal current collector and binder using an economical and simple vacuum filtration method. The sulfur content in the MLSC electrode was maintained at 60 wt%. The MLSC electrode delivered a high initial reversible discharge capacity of 913 mAh g−1 and maintained a capacity of 736 mAh g−1, indicating excellent capacity retention. In addition, the coulombic efficiency of the MLSC electrode was over 92% throughout the total cycling, demonstrating superior cycling stability. It exhibited the initial discharge capacities at 0.2 and 2C of 951 and 642 mAh g−1, respectively, with 68% rate capability (2C/0.2C). These results indicate that the carbon nanotube film–wrapped structure of the MLSC electrode enables rapid electron transport in the electrode owing to its good electrical conductivity, and that it successfully suppresses the dissolution of lithium polysulfide in the electrolyte. Further, the MLSC electrode was stable during folding and bending in pouch cells.

Suggested Citation

  • Lee, Won Yeol & Jin, En Mei & Cho, Jung Sang & Kang, Dong-Won & Jin, Bo & Jeong, Sang Mun, 2020. "Freestanding flexible multilayered Sulfur–Carbon nanotubes for Lithium–Sulfur battery cathodes," Energy, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318867
    DOI: 10.1016/j.energy.2020.118779
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118779?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Wei Seh & Jung Ho Yu & Weiyang Li & Po-Chun Hsu & Haotian Wang & Yongming Sun & Hongbin Yao & Qianfan Zhang & Yi Cui, 2014. "Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. Wang, Jianyi & Qin, Weiwei & Zhu, Xixi & Teng, Yongqiang, 2020. "Covalent organic frameworks (COF)/CNT nanocomposite for high performance and wide operating temperature lithium–sulfur batteries," Energy, Elsevier, vol. 199(C).
    3. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    4. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    5. Guangmin Zhou & Eunsu Paek & Gyeong S. Hwang & Arumugam Manthiram, 2015. "Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    6. Tiwari, Vimal K. & Song, Hyeonjun & Oh, Yeonjae & Jeong, Youngjin, 2020. "Synthesis of sulfur-co-polymer/porous long carbon nanotubes composite cathode by chemical and physical binding for high performance lithium-sulfur batteries," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yaqin & Wang, Feiyue & Fan, Zhupu & Wang, Zihang & Yang, Wenying & Ju, Wenqin & Lei, Weixin & Zou, Youlan & Ma, Zengsheng, 2022. "Internally enhanced conductive 3D porous hierarchical biochar framework for lithium sulfur battery," Energy, Elsevier, vol. 255(C).
    2. Tan Thong, Pham & Sadhasivam, T. & Kim, Nam-In & Kim, Yoong Ahm & Roh, Sung-Hee & Jung, Ho-Young, 2021. "Highly conductive current collector for enhancing conductivity and power supply of flexible thin-film Zn–MnO2 battery," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Zhibin & Chen, Ling & Zhang, Wenguang & Chen, Shiyu & Jian, Xiying & Liu, Xiang & Chen, Hongyu & Guo, Chunlei & Li, Weishan, 2021. "Sandwich-like NOCC@S8/rGO composite as cathode for high energy lithium-sulfur batteries," Energy, Elsevier, vol. 220(C).
    2. Yang, Chen & Li, Peng & Yu, Jia & Zhao, Li-Da & Kong, Long, 2020. "Approaching energy-dense and cost-effective lithium–sulfur batteries: From materials chemistry and price considerations," Energy, Elsevier, vol. 201(C).
    3. Zhang, Chaoyu & Zhang, Chengming & Li, Liyi & Guo, Qingbo, 2021. "Parameter analysis of power system for solar-powered unmanned aerial vehicle," Applied Energy, Elsevier, vol. 295(C).
    4. Jie Lei & Xiao-Xiang Fan & Ting Liu & Pan Xu & Qing Hou & Ke Li & Ru-Ming Yuan & Ming-Sen Zheng & Quan-Feng Dong & Jia-Jia Chen, 2022. "Single-dispersed polyoxometalate clusters embedded on multilayer graphene as a bifunctional electrocatalyst for efficient Li-S batteries," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    6. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    7. Lai, Xin & Yao, Yi & Tang, Xiaopeng & Zheng, Yuejiu & Zhou, Yuanqiang & Sun, Yuedong & Gao, Furong, 2023. "Voltage profile reconstruction and state of health estimation for lithium-ion batteries under dynamic working conditions," Energy, Elsevier, vol. 282(C).
    8. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).
    9. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    10. Yuzhao Liu & Xiangyu Meng & Zhiyu Wang & Jieshan Qiu, 2022. "Development of quasi-solid-state anode-free high-energy lithium sulfide-based batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).
    12. Ran Li & Hui Sun & Xue Wei & Weiwen Ta & Haiying Wang, 2022. "Lithium Battery State-of-Charge Estimation Based on AdaBoost.Rt-RNN," Energies, MDPI, vol. 15(16), pages 1-15, August.
    13. repec:abr:oajbrs:v:1:y:2020:i:2:p:43-47 is not listed on IDEAS
    14. Zhen Wu & Mingliang Liu & Wenfeng He & Tong Guo & Wei Tong & Erjun Kan & Xiaoping Ouyang & Fen Qiao & Junfeng Wang & Xueliang Sun & Xin Wang & Junwu Zhu & Ali Coskun & Yongsheng Fu, 2024. "Unveiling the autocatalytic growth of Li2S crystals at the solid-liquid interface in lithium-sulfur batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).
    16. Capkova, Dominika & Knap, Vaclav & Fedorkova, Andrea Strakova & Stroe, Daniel-Ioan, 2023. "Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging," Applied Energy, Elsevier, vol. 332(C).
    17. Zhu, Rui & Duan, Bin & Zhang, Junming & Zhang, Qi & Zhang, Chenghui, 2020. "Co-estimation of model parameters and state-of-charge for lithium-ion batteries with recursive restricted total least squares and unscented Kalman filter," Applied Energy, Elsevier, vol. 277(C).
    18. Wu, Lifeng & Zhang, Yu, 2023. "Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery," Energy, Elsevier, vol. 268(C).
    19. Fang Liu & Jie Ma & Weixing Su & Hanning Chen & Maowei He, 2020. "Research on Parameter Self-Learning Unscented Kalman Filtering Algorithm and Its Application in Battery Charge of State Estimation," Energies, MDPI, vol. 13(7), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.