IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220321010.html
   My bibliography  Save this article

Experimental study of carbon dioxide hydrate formation in the presence of graphene oxide

Author

Listed:
  • Liu, Ni
  • Chen, Litao
  • Liu, Caixia
  • Yang, Liang
  • Liu, Daoping

Abstract

The application of gas hydrate technology is limited by the slow formation rate and low gas storage capacity of gas hydrates. In this study, the effects of graphene oxide (GO) and mixed additives consisting of GO, sodium dodecyl sulfate (SDS), and tetrahydrofuran (THF) on CO2 hydrate formation were studied experimentally under quiescent conditions. The addition of 0.0025 wt% GO effectively shortened the induction time of CO2 hydrate formation by 74% compared with that in pure water; this promotion effect decreased with increasing GO concentration. However, the gas consumption and gas storage capacity of the hydrate formed under these conditions using GO alone were small. The effects of mixed additives consisting of various concentrations of GO, 0.3% SDS, and 4% THF on the CO2 hydrate formation were further studied to overcome this disadvantage. Secondary hydrate nucleation occurred in systems containing the SDS/THF/GO mixed additives, which greatly increased the gas storage capacity of the hydrate. The largest gas storage capacity enhancement (152%) was achieved in the mixed additive system containing 0.0025 wt% GO. The mechanisms by which the different additives promote hydrate formation have also been analyzed.

Suggested Citation

  • Liu, Ni & Chen, Litao & Liu, Caixia & Yang, Liang & Liu, Daoping, 2020. "Experimental study of carbon dioxide hydrate formation in the presence of graphene oxide," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321010
    DOI: 10.1016/j.energy.2020.118994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nashed, Omar & Partoon, Behzad & Lal, Bhajan & Sabil, Khalik M. & Shariff, Azmi Mohd, 2019. "Investigation of functionalized carbon nanotubes' performance on carbon dioxide hydrate formation," Energy, Elsevier, vol. 174(C), pages 602-610.
    2. Cai, Jing & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2017. "Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment," Applied Energy, Elsevier, vol. 204(C), pages 1526-1534.
    3. Choi, Jae Woo & Chung, Jin Tack & Kang, Yong Tae, 2014. "CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants," Energy, Elsevier, vol. 78(C), pages 869-876.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    2. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    3. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    5. Mu, Liang & Zhou, Ziqi & Zhao, Huixing & Zhu, Xiaohai & Cui, Qingyan, 2024. "High-efficiency recovery of methane from coal bed gas via hydrate formation in emulsions," Energy, Elsevier, vol. 290(C).
    6. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Experimental investigation of hydrate formation kinetics and microscopic properties by a synthesized ternary gas mixture with combination additives," Energy, Elsevier, vol. 259(C).
    7. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Li, Airong & Jiang, Lele & Tang, Siyao, 2017. "An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor," Energy, Elsevier, vol. 134(C), pages 629-637.
    9. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    10. Cheng, Zucheng & Li, Shaohua & Liu, Yu & Zhang, Yi & Ling, Zheng & Yang, Mingjun & Jiang, Lanlan & Song, Yongchen, 2022. "Post-combustion CO2 capture and separation in flue gas based on hydrate technology:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Wang, Fang & Mu, Jinchi & Lin, Wenjing & Cao, Yuehan & Wang, Yuhan & Leng, Shuai & Guo, Lihong & Zhou, Ying, 2024. "Post-combustion CO2 capture via the hydrate formation at the gas-liquid-solid interface induced by the non-surfactant graphene oxide," Energy, Elsevier, vol. 290(C).
    12. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
    13. Sun, Qibei & Kim, Shol & Kang, Yong Tae, 2017. "Study on dissociation characteristics of CO2 hydrate with THF for cooling application," Applied Energy, Elsevier, vol. 190(C), pages 249-256.
    14. Zang, Xiaoya & Zhou, Xuebing & Wan, Lihua & Wang, Jing & Liang, Deqing, 2020. "Investigation of hydrate formation by synthetic ternary gas mixture with cyclopentane(C5H10)," Energy, Elsevier, vol. 210(C).
    15. Sun, Qibei & Kang, Yong Tae, 2016. "Review on CO2 hydrate formation/dissociation and its cold energy application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 478-494.
    16. Yu, Yi-Song & Zhang, Qing-Zong & Li, Xiao-Sen & Chen, Chang & Zhou, Shi-Dong, 2020. "Kinetics, compositions and structures of carbon dioxide/hydrogen hydrate formation in the presence of cyclopentane," Applied Energy, Elsevier, vol. 265(C).
    17. Cai, Jing & Zhang, Yu & Xu, Chun-Gang & Xia, Zhi-Ming & Chen, Zhao-Yang & Li, Xiao-Sen, 2018. "Raman spectroscopic studies on carbon dioxide separation from fuel gas via clathrate hydrate in the presence of tetrahydrofuran," Applied Energy, Elsevier, vol. 214(C), pages 92-102.
    18. Huang, Zhuo-Yi & Zhang, Wei & Xu, Chun-Gang & Li, Xiao-Sen & Li, Yun-Hao & Wang, Yi & Chen, Zhao-Yang, 2024. "Effects of multi-walled carbon nanotubes on microstructure transformation of water before carbon dioxide hydrate formation," Energy, Elsevier, vol. 295(C).
    19. Shuo Yan & Wenjie Dai & Shuli Wang & Yongchao Rao & Shidong Zhou, 2018. "Graphene Oxide: An Effective Promoter for CO 2 Hydrate Formation," Energies, MDPI, vol. 11(7), pages 1-13, July.
    20. Zhou, Shi-Dong & Xiao, Yan-Yun & Ni, Xing-Ya & Li, Xiao-Yan & Wu, Zhi-Min & Liu, Yang & Lv, Xiao-Fang, 2024. "Kinetics studies of CO2 hydrate formation in the presence of l-methionine coupled with multi-walled carbon nanotubes," Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220321010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.