IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224007552.html
   My bibliography  Save this article

Effects of multi-walled carbon nanotubes on microstructure transformation of water before carbon dioxide hydrate formation

Author

Listed:
  • Huang, Zhuo-Yi
  • Zhang, Wei
  • Xu, Chun-Gang
  • Li, Xiao-Sen
  • Li, Yun-Hao
  • Wang, Yi
  • Chen, Zhao-Yang

Abstract

There is no consensus on the micro mechanism of gas hydrate formation. The essence of water conversion into hydrates is the transformation of disorderly arranged water into the water with specific structure under a certain condition. This study used different multi-walled carbon nanotubes (MWCNTs) as solid promoters for gas hydrate formation. By comparing the effects of nanotubes modified with hydroxyl, carboxyl and amidogen on the microstructure transformation of water before CO2 hydrate formation, the micro mechanism and influence rules of gas hydrate formation were systematically study. The results indicated that the conversion of water to hydrates mainly manifested as the mutual conversion of strong/weak hydrogen bonding water. Due to the Brownian motion and dispersion of MWCNTs, the hydrogen bonds of the weak hydrogen-bonded water weakened (the corresponding peak blue shifts), and the distance between water molecules (dO−O) expanded, forming relatively loose hydrate, which was conducive to gas diffusion in the solid hydrate phase and increased the final gas consumption. Meanwhile, the strengthening of strong hydrogen bonded water increased the rate of hydrate formation.

Suggested Citation

  • Huang, Zhuo-Yi & Zhang, Wei & Xu, Chun-Gang & Li, Xiao-Sen & Li, Yun-Hao & Wang, Yi & Chen, Zhao-Yang, 2024. "Effects of multi-walled carbon nanotubes on microstructure transformation of water before carbon dioxide hydrate formation," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007552
    DOI: 10.1016/j.energy.2024.130983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224007552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Babu, Ponnivalavan & Linga, Praveen & Kumar, Rajnish & Englezos, Peter, 2015. "A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture," Energy, Elsevier, vol. 85(C), pages 261-279.
    2. Nashed, Omar & Partoon, Behzad & Lal, Bhajan & Sabil, Khalik M. & Shariff, Azmi Mohd, 2019. "Investigation of functionalized carbon nanotubes' performance on carbon dioxide hydrate formation," Energy, Elsevier, vol. 174(C), pages 602-610.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    2. Wang, Xiaolin & Zhang, Fengyuan & Lipiński, Wojciech, 2020. "Research progress and challenges in hydrate-based carbon dioxide capture applications," Applied Energy, Elsevier, vol. 269(C).
    3. Liu, Fa-Ping & Li, Ai-Rong & Qing, Sheng-Lan & Luo, Ze-Dong & Ma, Yu-Ling, 2022. "Formation kinetics, mechanism of CO2 hydrate and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    4. Zhao, Zhijun & Xing, Xiao & Tang, Zhigang & Zheng, Yong & Fei, Weiyang & Liang, Xiangfeng & Ataeivarjovi, E. & Guo, Dong, 2018. "Experiment and simulation study of CO2 solubility in dimethyl carbonate, 1-octyl-3-methylimidazolium tetrafluoroborate and their mixtures," Energy, Elsevier, vol. 143(C), pages 35-42.
    5. Remi-Erempagamo Tariyemienyo Meindinyo & Thor Martin Svartaas, 2016. "Gas Hydrate Growth Kinetics: A Parametric Study," Energies, MDPI, vol. 9(12), pages 1-29, December.
    6. Chen, Zhaoyang & Fang, Jie & Xu, Chungang & Xia, Zhiming & Yan, Kefeng & Li, Xiaosen, 2020. "Carbon dioxide hydrate separation from Integrated Gasification Combined Cycle (IGCC) syngas by a novel hydrate heat-mass coupling method," Energy, Elsevier, vol. 199(C).
    7. Cai, Jing & Xu, Chun-Gang & Lin, Fu-Hua & Yu, Hai-Zhu & Li, Xiao-Sen, 2016. "A novel method for evaluating effects of promoters on hydrate formation," Energy, Elsevier, vol. 102(C), pages 567-575.
    8. Kim, Soyoung & Choi, Sung-Deuk & Seo, Yongwon, 2017. "CO2 capture from flue gas using clathrate formation in the presence of thermodynamic promoters," Energy, Elsevier, vol. 118(C), pages 950-956.
    9. Nguyen, Ngoc N. & La, Vinh T. & Huynh, Chinh D. & Nguyen, Anh V., 2022. "Technical and economic perspectives of hydrate-based carbon dioxide capture," Applied Energy, Elsevier, vol. 307(C).
    10. Nashed, Omar & Partoon, Behzad & Lal, Bhajan & Sabil, Khalik M. & Shariff, Azmi Mohd, 2019. "Investigation of functionalized carbon nanotubes' performance on carbon dioxide hydrate formation," Energy, Elsevier, vol. 174(C), pages 602-610.
    11. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
    12. Zang, Xiaoya & Wang, Jing & He, Yong & Zhou, Xuebing & Liang, Deqing, 2022. "Experimental investigation of hydrate formation kinetics and microscopic properties by a synthesized ternary gas mixture with combination additives," Energy, Elsevier, vol. 259(C).
    13. Yan, Jin & Lu, Yi-Yu & Zhong, Dong-Liang & Zou, Zhen-Lin & Li, Jian-Bo, 2019. "Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids," Energy, Elsevier, vol. 180(C), pages 728-736.
    14. Wang, Yan & Zhong, Dong-Liang & Englezos, Peter & Yan, Jin & Ge, Bin-Bin, 2020. "Kinetic study of semiclathrate hydrates formed with CO2 in the presence of tetra-n-butyl ammonium bromide and tetra-n-butyl phosphonium bromide," Energy, Elsevier, vol. 212(C).
    15. Seiji Matsuo & Hiroki Umeda & Satoshi Takeya & Toyohisa Fujita, 2017. "A Feasibility Study on Hydrate-Based Technology for Transporting CO 2 from Industrial to Agricultural Areas," Energies, MDPI, vol. 10(5), pages 1-13, May.
    16. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    17. Bi, Yuehong & Chen, Jie & Miao, Zhen, 2016. "Thermodynamic optimization for dissociation process of gas hydrates," Energy, Elsevier, vol. 106(C), pages 270-276.
    18. Foroutan, Shima & Mohsenzade, Hanie & Dashti, Ali & Roosta, Hadi, 2021. "New insights into the evaluation of kinetic hydrate inhibitors and energy consumption in rocking and stirred cells," Energy, Elsevier, vol. 218(C).
    19. Babu, Ponnivalavan & Ong, Hong Wen Nelson & Linga, Praveen, 2016. "A systematic kinetic study to evaluate the effect of tetrahydrofuran on the clathrate process for pre-combustion capture of carbon dioxide," Energy, Elsevier, vol. 94(C), pages 431-442.
    20. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224007552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.