IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220318016.html
   My bibliography  Save this article

High thermoelectric performance of two-dimensional α-GeTe bilayer

Author

Listed:
  • Marfoua, Brahim
  • Lim, Young Soo
  • Hong, Jisang

Abstract

Study on two-dimensional (2D) materials attracts extensive research interests due to its peculiar physical properties. We calculated the temperature dependence of the thermoelectric property of the 2D α-GeTe layer by applying the Boltzmann transport theory and also used the semi-empirical Wiedemann–Franz law method. We found that the electronic thermal conductivity from the Wiedemann–Franz law was substantially smaller than that found from the Boltzmann transport theory. Thus, from the Boltzmann transport theory, we obtained a maximum ZT of 0.95 in the bilayer structure. We also found that the 2D α-GeTe bilayer system exhibits an anomalous temperature and carrier type dependencies. For instance, both n- and p-type systems displayed high ZT of 0.8–0.95 and this value was unchanged in a wide range of temperatures 100–600 K. Overall, the TE efficiency of the bilayer system was insensitive to the wide range of temperature and carrier concentration and also carrier type. Thus, the 2D bilayer α- GeTe may show superior TE property, not found in any other 2D materials.

Suggested Citation

  • Marfoua, Brahim & Lim, Young Soo & Hong, Jisang, 2020. "High thermoelectric performance of two-dimensional α-GeTe bilayer," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318016
    DOI: 10.1016/j.energy.2020.118693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220318016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kanishka Biswas & Jiaqing He & Ivan D. Blum & Chun-I Wu & Timothy P. Hogan & David N. Seidman & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2012. "High-performance bulk thermoelectrics with all-scale hierarchical architectures," Nature, Nature, vol. 489(7416), pages 414-418, September.
    2. Bhuvanesh Srinivasan & David Berthebaud & Takao Mori, 2020. "Is LiI a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study," Energies, MDPI, vol. 13(3), pages 1-7, February.
    3. Yeseul Lee & Shih-Han Lo & Changqiang Chen & Hui Sun & Duck-Young Chung & Thomas C. Chasapis & Ctirad Uher & Vinayak P. Dravid & Mercouri G. Kanatzidis, 2014. "Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide," Nature Communications, Nature, vol. 5(1), pages 1-11, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Bethke & Virgil Andrei & Klaus Rademann, 2016. "Decreasing the Effective Thermal Conductivity in Glass Supported Thermoelectric Layers," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-19, March.
    2. Romo-De-La-Cruz, Cesar-Octavio & Chen, Yun & Liang, Liang & Paredes-Navia, Sergio A. & Wong-Ng, Winnie K. & Song, Xueyan, 2023. "Entering new era of thermoelectric oxide ceramics with high power factor through designing grain boundaries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    3. Bushra Jabar & Fu Li & Zhuanghao Zheng & Adil Mansoor & Yongbin Zhu & Chongbin Liang & Dongwei Ao & Yuexing Chen & Guangxing Liang & Ping Fan & Weishu Liu, 2021. "Homo-composition and hetero-structure nanocomposite Pnma Bi2SeS2 - Pnnm Bi2SeS2 with high thermoelectric performance," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Zihang Liu & Weihong Gao & Hironori Oshima & Kazuo Nagase & Chul-Ho Lee & Takao Mori, 2022. "Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Yingcai Zhu & Dongyang Wang & Tao Hong & Lei Hu & Toshiaki Ina & Shaoping Zhan & Bingchao Qin & Haonan Shi & Lizhong Su & Xiang Gao & Li-Dong Zhao, 2022. "Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Yilin Jiang & Jinfeng Dong & Hua-Lu Zhuang & Jincheng Yu & Bin Su & Hezhang Li & Jun Pei & Fu-Hua Sun & Min Zhou & Haihua Hu & Jing-Wei Li & Zhanran Han & Bo-Ping Zhang & Takao Mori & Jing-Feng Li, 2022. "Evolution of defect structures leading to high ZT in GeTe-based thermoelectric materials," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    8. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    9. Lei Wang & Yi Wen & Shulin Bai & Cheng Chang & Yichen Li & Shan Liu & Dongrui Liu & Siqi Wang & Zhe Zhao & Shaoping Zhan & Qian Cao & Xiang Gao & Hongyao Xie & Li-Dong Zhao, 2024. "Realizing thermoelectric cooling and power generation in N-type PbS0.6Se0.4 via lattice plainification and interstitial doping," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    10. Montecucco, Andrea & Knox, Andrew R., 2014. "Accurate simulation of thermoelectric power generating systems," Applied Energy, Elsevier, vol. 118(C), pages 166-172.
    11. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2020. "Simultaneous materials and layout optimization of non-imaging optically concentrated solar thermoelectric generators," Energy, Elsevier, vol. 194(C).
    12. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    13. Decheng An & Senhao Zhang & Xin Zhai & Wutao Yang & Riga Wu & Huaide Zhang & Wenhao Fan & Wenxian Wang & Shaoping Chen & Oana Cojocaru-Mirédin & Xian-Ming Zhang & Matthias Wuttig & Yuan Yu, 2024. "Metavalently bonded tellurides: the essence of improved thermoelectric performance in elemental Te," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Zhifang Zhou & Yi Huang & Bin Wei & Yueyang Yang & Dehong Yu & Yunpeng Zheng & Dongsheng He & Wenyu Zhang & Mingchu Zou & Jin-Le Lan & Jiaqing He & Ce-Wen Nan & Yuan-Hua Lin, 2023. "Compositing effects for high thermoelectric performance of Cu2Se-based materials," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Bhuvanesh Srinivasan & David Berthebaud & Takao Mori, 2020. "Is LiI a Potential Dopant Candidate to Enhance the Thermoelectric Performance in Sb-Free GeTe Systems? A Prelusive Study," Energies, MDPI, vol. 13(3), pages 1-7, February.
    16. Zhu, Wei & Deng, Yuan & Wang, Yao & Shen, Shengfei & Gulfam, Raza, 2016. "High-performance photovoltaic-thermoelectric hybrid power generation system with optimized thermal management," Energy, Elsevier, vol. 100(C), pages 91-101.
    17. Li, Yong & Yang, Jie & Song, Jian, 2016. "Nano-energy system coupling model and failure characterization of lithium ion battery electrode in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1250-1261.
    18. Eom, Yoomin & Wijethunge, Dimuthu & Park, Hwanjoo & Park, Sang Hyun & Kim, Woochul, 2017. "Flexible thermoelectric power generation system based on rigid inorganic bulk materials," Applied Energy, Elsevier, vol. 206(C), pages 649-656.
    19. Sergey Z. Sapozhnikov & Vladimir Y. Mityakov & Andrey V. Mityakov & Andrey A. Gusakov & Elza R. Zainullina & Mikhail A. Grekov & Vladimir V. Seroshtanov & Alexander Bashkatov & Alexander Y. Babich & A, 2020. "Gradient Heatmetry Advances," Energies, MDPI, vol. 13(23), pages 1-23, November.
    20. Ni, Dan & Song, Haijun & Chen, Yuanxun & Cai, Kefeng, 2019. "Free-standing highly conducting PEDOT films for flexible thermoelectric generator," Energy, Elsevier, vol. 170(C), pages 53-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220318016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.