IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220317643.html
   My bibliography  Save this article

Burning condition recognition of rotary kiln based on spatiotemporal features of flame video

Author

Listed:
  • Chen, Hua
  • Yan, Tingting
  • Zhang, Xiaogang

Abstract

In the coal-fire industry, recognition of burning condition is vital for combustion control and optimization as it can provide early warning of abnormal conditions in the combustion system. We propose an effective model based on spatiotemporal features extracted from flame video for burning condition recognition especially for unsteady state condition. This model extracts features from both the spatial and temporal dimensions based on multiple adjacent frames to capture the appearance and motion information of the flame. Two new three-dimensional (3D) descriptors are developed to characterize the dynamic characteristics of the flame video stream. A computationally simple and fast dynamic texture descriptor, 3DBLBP, is designed to extract flame dynamic texture and motion from three adjacent frames of a video block, and a dynamic structure descriptor, HOPC-TOP is developed by extracting 3D phase congruency information of video clip from three orthogonal planes to capture structure and motion characterizes of flame. The two descriptors are combined to extract spatiotemporal features from flame clip for burning condition recognition. Experiment results show the proposed framework can achieve a high recognition accuracy in the real-world data, thus verifying the effectiveness of our proposed framework for the recognition of burning conditions in a rotary kiln.

Suggested Citation

  • Chen, Hua & Yan, Tingting & Zhang, Xiaogang, 2020. "Burning condition recognition of rotary kiln based on spatiotemporal features of flame video," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317643
    DOI: 10.1016/j.energy.2020.118656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220317643
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhenyu & Song, Chunfeng & Chen, Tao, 2017. "Deep learning based monitoring of furnace combustion state and measurement of heat release rate," Energy, Elsevier, vol. 131(C), pages 106-112.
    2. Chen, Junghui & Hsu, Tong-Yang & Chen, Chih-Chien & Cheng, Yi-Cheng, 2010. "Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images," Applied Energy, Elsevier, vol. 87(7), pages 2169-2179, July.
    3. Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.
    4. Tóth, Pál & Garami, Attila & Csordás, Bernadett, 2017. "Image-based deep neural network prediction of the heat output of a step-grate biomass boiler," Applied Energy, Elsevier, vol. 200(C), pages 155-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
    2. Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.
    3. Vakalis, Stergios & Moustakas, Konstantinos, 2019. "Modelling of advanced gasification systems (MAGSY): Simulation and validation for the case of the rising co-current reactor," Applied Energy, Elsevier, vol. 242(C), pages 526-533.
    4. Romina Dastoorian & Lee J. Wells, 2023. "A hybrid off-line/on-line quality control approach for real-time monitoring of high-density datasets," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 669-682, February.
    5. Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
    6. Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
    7. Chen, Junghui & Chang, Yu-Hsiang & Cheng, Yi-Cheng & Hsu, Chen-Kai, 2012. "Design of image-based control loops for industrial combustion processes," Applied Energy, Elsevier, vol. 94(C), pages 13-21.
    8. Koziel, Sylvie & Hilber, Patrik & Westerlund, Per & Shayesteh, Ebrahim, 2021. "Investments in data quality: Evaluating impacts of faulty data on asset management in power systems," Applied Energy, Elsevier, vol. 281(C).
    9. Zhou, Dongdong & Cheng, Shusen, 2019. "Measurement study of the PCI process on the temperature distribution in raceway zone of blast furnace by using digital imaging techniques," Energy, Elsevier, vol. 174(C), pages 814-822.
    10. Héctor Rodríguez-Rángel & Dulce María Arias & Luis Alberto Morales-Rosales & Victor Gonzalez-Huitron & Mario Valenzuela Partida & Joan García, 2022. "Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems," Energies, MDPI, vol. 15(7), pages 1-18, March.
    11. González-Cencerrado, A. & Peña, B. & Gil, A., 2012. "Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner," Applied Energy, Elsevier, vol. 94(C), pages 375-384.
    12. Halil Akbaş & Gültekin Özdemir, 2020. "An Integrated Prediction and Optimization Model of a Thermal Energy Production System in a Factory Producing Furniture Components," Energies, MDPI, vol. 13(22), pages 1-29, November.
    13. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
    14. Guo, Yabin & Tan, Zehan & Chen, Huanxin & Li, Guannan & Wang, Jiangyu & Huang, Ronggeng & Liu, Jiangyan & Ahmad, Tanveer, 2018. "Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving," Applied Energy, Elsevier, vol. 225(C), pages 732-745.
    15. Ögren, Yngve & Tóth, Pál & Garami, Attila & Sepman, Alexey & Wiinikka, Henrik, 2018. "Development of a vision-based soft sensor for estimating equivalence ratio and major species concentration in entrained flow biomass gasification reactors," Applied Energy, Elsevier, vol. 226(C), pages 450-460.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220317643. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.