Deep learning based monitoring of furnace combustion state and measurement of heat release rate
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2017.05.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Hua & Yan, Tingting & Zhang, Xiaogang, 2020. "Burning condition recognition of rotary kiln based on spatiotemporal features of flame video," Energy, Elsevier, vol. 211(C).
- Dong, Zhe & Liu, Miao & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2019. "Adaptive state-observer for monitoring flexible nuclear reactors," Energy, Elsevier, vol. 171(C), pages 893-909.
- Han, Zhezhe & Hossain, Md. Moinul & Wang, Yuwei & Li, Jian & Xu, Chuanlong, 2020. "Combustion stability monitoring through flame imaging and stacked sparse autoencoder based deep neural network," Applied Energy, Elsevier, vol. 259(C).
- Tian Qiu & Minjian Liu & Guiping Zhou & Li Wang & Kai Gao, 2019. "An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model," Energies, MDPI, vol. 12(13), pages 1-17, July.
- Yuteng Xiao & Jihang Yin & Yifan Hu & Junzhe Wang & Hongsheng Yin & Honggang Qi, 2019. "Monitoring and Control in Underground Coal Gasification: Current Research Status and Future Perspective," Sustainability, MDPI, vol. 11(1), pages 1-14, January.
- Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
More about this item
Keywords
Deep learning; Combustion state; Heat release rate; Flame image; Convolutional neural network; Smooth and adjustment techniques;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:131:y:2017:i:c:p:106-112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.