IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v183y2019icp880-891.html
   My bibliography  Save this article

Numerical determination of temperature distribution in heating network

Author

Listed:
  • Ocłoń, Paweł
  • Nowak-Ocłoń, Marzena
  • Vallati, Andrea
  • Quintino, Alessandro
  • Corcione, Massimo

Abstract

This paper presents the determination of the heat losses of the pre-insulated pipe and twin pipe in the heating network. The paper compares the heat losses calculated by using the analytical solution (1D model) and numerical model (2D model) based on the Finite Element Method. The developed numerical model considered undisturbed ground temperature at various depths. Therefore, it allowed to study the effect of temperature distribution at various ground depths on heat losses in heating network. Various variants of insulation are considered including standard, plus and plus-plus types for pre-insulated tubes. The remaining heat loss calculation is based merely on temperature levels and thermal resistance factors (in the ground), determined by the pipe dimensions and materials. The differences in calculated heat losses by analytical and numerical model do not exceed 10%.

Suggested Citation

  • Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Vallati, Andrea & Quintino, Alessandro & Corcione, Massimo, 2019. "Numerical determination of temperature distribution in heating network," Energy, Elsevier, vol. 183(C), pages 880-891.
  • Handle: RePEc:eee:energy:v:183:y:2019:i:c:p:880-891
    DOI: 10.1016/j.energy.2019.06.163
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219312952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.06.163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Hongwei & Svendsen, Svend, 2012. "Energy and exergy analysis of low temperature district heating network," Energy, Elsevier, vol. 45(1), pages 237-246.
    2. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    3. Sholahudin, S. & Han, Hwataik, 2016. "Simplified dynamic neural network model to predict heating load of a building using Taguchi method," Energy, Elsevier, vol. 115(P3), pages 1672-1678.
    4. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
    5. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    6. Dobos, László & Abonyi, János, 2011. "Controller tuning of district heating networks using experiment design techniques," Energy, Elsevier, vol. 36(8), pages 4633-4639.
    7. Danielewicz, J. & Śniechowska, B. & Sayegh, M.A. & Fidorów, N. & Jouhara, H., 2016. "Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground," Energy, Elsevier, vol. 108(C), pages 172-184.
    8. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    9. Vivian, Jacopo & Emmi, Giuseppe & Zarrella, Angelo & Jobard, Xavier & Pietruschka, Dirk & De Carli, Michele, 2018. "Evaluating the cost of heat for end users in ultra low temperature district heating networks with booster heat pumps," Energy, Elsevier, vol. 153(C), pages 788-800.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    2. Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2020. "Thermal and economic analysis of preinsulated and twin-pipe heat network operation," Energy, Elsevier, vol. 193(C).
    3. Libor Kudela & Radomír Chýlek & Jiří Pospíšil, 2020. "Efficient Integration of Machine Learning into District Heating Predictive Models," Energies, MDPI, vol. 13(23), pages 1-12, December.
    4. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Antonio Rodero, 2019. "Reduction of Heat Losses Using Quadruple Heating Pre-Insulated Networks: A Case Study," Energies, MDPI, vol. 12(24), pages 1-12, December.
    5. Manservigi, Lucrezia & Bahlawan, Hilal & Losi, Enzo & Morini, Mirko & Spina, Pier Ruggero & Venturini, Mauro, 2022. "A diagnostic approach for fault detection and identification in district heating networks," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Pellegrini & Augusto Bianchini, 2018. "The Innovative Concept of Cold District Heating Networks: A Literature Review," Energies, MDPI, vol. 11(1), pages 1-16, January.
    2. Babiarz, Bożena & Blokus, Agnieszka, 2020. "Dependency of technological lines in reliability analysis of heat production," Energy, Elsevier, vol. 211(C).
    3. Meibodi, Saleh S. & Rees, Simon & Loveridge, Fleur, 2024. "Modeling district heating pipelines using a hybrid dynamic thermal network approach," Energy, Elsevier, vol. 290(C).
    4. Chicherin, Stanislav, 2020. "Methodology for analyzing operation data for optimum district heating (DH) system design: Ten-year data of Omsk, Russia," Energy, Elsevier, vol. 211(C).
    5. Xie, Zichan & Wang, Haichao & Hua, Pengmin & Lahdelma, Risto, 2023. "Discrete event simulation for dynamic thermal modelling of district heating pipe," Energy, Elsevier, vol. 285(C).
    6. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    7. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    8. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    9. Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
    10. Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
    11. Zheng, Xuejing & Sun, Qihang & Wang, Yaran & Zheng, Lijun & Gao, Xinyong & You, Shijun & Zhang, Huan & Shi, Kaiyu, 2021. "Thermo-hydraulic coupled simulation and analysis of a real large-scale complex district heating network in Tianjin," Energy, Elsevier, vol. 236(C).
    12. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    13. Jiang, Mengting & Speetjens, Michel & Rindt, Camilo & Smeulders, David, 2023. "A data-based reduced-order model for dynamic simulation and control of district-heating networks," Applied Energy, Elsevier, vol. 340(C).
    14. Wang, Hai & Meng, Hua, 2018. "Improved thermal transient modeling with new 3-order numerical solution for a district heating network with consideration of the pipe wall's thermal inertia," Energy, Elsevier, vol. 160(C), pages 171-183.
    15. Nowak-Ocłoń, Marzena & Ocłoń, Paweł, 2020. "Thermal and economic analysis of preinsulated and twin-pipe heat network operation," Energy, Elsevier, vol. 193(C).
    16. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
    17. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Accounting for pipeline thermal capacity in district heating simulations," Energy, Elsevier, vol. 219(C).
    18. Sartor, K. & Dewalef, P., 2017. "Experimental validation of heat transport modelling in district heating networks," Energy, Elsevier, vol. 137(C), pages 961-968.
    19. Brunt, Nicholas & Duquette, Jean & O'Brien, William, 2023. "Techno-economic and environmental performance of two state-of-the-art solar-assisted district energy system topologies," Energy, Elsevier, vol. 276(C).
    20. Wendel, Frank & Blesl, Markus & Brodecki, Lukasz & Hufendiek, Kai, 2022. "Expansion or decommission? – Transformation of existing district heating networks by reducing temperature levels in a cost-optimum network design," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:183:y:2019:i:c:p:880-891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.