IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v208y2020ics0360544220313554.html
   My bibliography  Save this article

Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities

Author

Listed:
  • V, Arun Kumar
  • Verma, Ashu
  • Talwar, Rajbans

Abstract

Energy security and the quality of power supply are the key issues being faced with rising demand for electricity. The scarcity of fossil fuels and rising environmental concerns have put the focus on renewable sources of energy. However, obtaining firm power from them is a challenge. Even the complementary nature of energy delivery by different sources like solar and wind power systems may not entirely serve the purpose, as in multi-generation energy systems. Energy storage is set to play a key role in hybrid energy systems by smoothening the variations in intermittent generation and arresting the net load variations. However arriving at the optimal capacity and designing the optimal operating strategy for a battery storage system is the real challenge. A generalized model for techno-economic optimization has been developed and presented. This paper attempts to find the optimal sizes for a battery bank, solar PV system, Biomass and Diesel generator, integrated with a distribution system, in a microgrid configuration. Economic benefits of operating the battery system alongside the different distributed generators, in different regimes compared to existing tariff (of utility pricing like flat tariff, time of use, DG pricing etc.) has been shown. The developed model is solved using mixed integer linear programming (MILP) for four different microgrids healthcare, educational and industrial facilities. The proposed optimal model has been rigorously tested for all cases to evaluate robustness of the self-sustained asset configuration. The techno-economic analysis result (LCOE and NPV) shows that the obtained optimal asset configuration with renewable energy (RE) combination gives cost effective optimal solution with minimal carbon footprint.

Suggested Citation

  • V, Arun Kumar & Verma, Ashu & Talwar, Rajbans, 2020. "Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities," Energy, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313554
    DOI: 10.1016/j.energy.2020.118248
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118248?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Bridgwater, A. V. & Toft, A. J. & Brammer, J. G., 2002. "A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(3), pages 181-246, September.
    3. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    4. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    5. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    6. Zhou, Kaile & Yang, Shanlin & Chen, Zhiqiang & Ding, Shuai, 2014. "Optimal load distribution model of microgrid in the smart grid environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 304-310.
    7. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    8. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahbazbegian, Vahid & Dehghani, Farnam & Shafiyi, Mohammad Agha & Shafie-khah, Miadreza & Laaksonen, Hannu & Ameli, Hossein, 2023. "Techno-economic assessment of energy storage systems in multi-energy microgrids utilizing decomposition methodology," Energy, Elsevier, vol. 283(C).
    2. Edrees Yahya Alhawsawi & Hanan Mikhael D. Habbi & Mansour Hawsawi & Mohamed A. Zohdy, 2023. "Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University," Energies, MDPI, vol. 16(15), pages 1-26, August.
    3. León, L.M. & Romero-Quete, D. & Merchán, N. & Cortés, C.A., 2023. "Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids," Applied Energy, Elsevier, vol. 335(C).
    4. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    5. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    6. Li, Chengzhou & Wang, Ningling & Wang, Zhuo & Dou, Xiaoxiao & Zhang, Yumeng & Yang, Zhiping & Maréchal, François & Wang, Ligang & Yang, Yongping, 2022. "Energy hub-based optimal planning framework for user-level integrated energy systems: Considering synergistic effects under multiple uncertainties," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    2. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    3. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
    4. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    5. Mendecka, Barbara & Chiappini, Daniele & Tribioli, Laura & Cozzolino, Raffaello, 2021. "A biogas-solar based hybrid off-grid power plant with multiple storages for United States commercial buildings," Renewable Energy, Elsevier, vol. 179(C), pages 705-722.
    6. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
    7. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.
    8. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Thapa, Sunil & Indrawan, Natarianto, 2018. "Scale-up of a downdraft gasifier system for commercial scale mobile power generation," Renewable Energy, Elsevier, vol. 118(C), pages 25-33.
    9. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    10. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    11. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    12. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    13. Shuang Rong & Weixing Li & Zhimin Li & Yong Sun & Taiyi Zheng, 2015. "Optimal Allocation of Thermal-Electric Decoupling Systems Based on the National Economy by an Improved Conjugate Gradient Method," Energies, MDPI, vol. 9(1), pages 1-21, December.
    14. Kat, Bora, 2023. "Clean energy transition in the Turkish power sector: A techno-economic analysis with a high-resolution power expansion model," Utilities Policy, Elsevier, vol. 82(C).
    15. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    16. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    17. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    18. Katla, Daria & Bartela, Łukasz & Skorek-Osikowska, Anna, 2020. "Evaluation of electricity generation subsystem of power-to-gas-to-power unit using gas expander and heat recovery steam generator," Energy, Elsevier, vol. 212(C).
    19. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    20. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220313554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.