Thermal behaviors and kinetics for fast pyrolysis of chemical pretreated waste cassava residues
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2020.118192
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pattiya, Adisak & Sukkasi, Sittha & Goodwin, Vituruch, 2012. "Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor," Energy, Elsevier, vol. 44(1), pages 1067-1077.
- Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shiqiao Yang & Ming Lei & Min Li & Chao Liu & Beichen Xue & Rui Xiao, 2022. "Comprehensive Estimation of Combustion Behavior and Thermochemical Structure Evolution of Four Typical Industrial Polymeric Wastes," Energies, MDPI, vol. 15(7), pages 1-22, March.
- Liu, Huiyu & Zhang, Jun & Shan, Rui & Yuan, Haoran & Chen, Yong, 2024. "Mechanistic insights into Ga-modified hollow ZSM-5 catalyzed fast pyrolysis of cassava residue," Energy, Elsevier, vol. 295(C).
- Mohd Safaai, Nor Sharliza & Pang, Shusheng, 2021. "Pyrolysis kinetics of chemically treated and torrefied radiata pine identified through thermogravimetric analysis," Renewable Energy, Elsevier, vol. 175(C), pages 200-213.
- Zhang, Jun & Li, Chengyu & Yuan, Haoran & Chen, Yong, 2022. "Enhancement of aromatics production via cellulose fast pyrolysis over Ru modified hierarchical zeolites," Renewable Energy, Elsevier, vol. 184(C), pages 280-290.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sánchez, Antonio Santos & Silva, Yuri Lopes & Kalid, Ricardo Araújo & Cohim, Eduardo & Torres, Ednildo Andrade, 2017. "Waste bio-refineries for the cassava starch industry: New trends and review of alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1265-1275.
- Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
- Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
- Yazan, Devrim Murat & Mandras, Giovanni & Garau, Giorgio, 2017. "Environmental and economic sustainability of integrated production in bio-refineries: The thistle case in Sardinia," Renewable Energy, Elsevier, vol. 102(PB), pages 349-360.
- Su, Yu & Zhang, Yanfang & Qi, Jinxia & Xue, Tiantian & Xu, Minggao & Yang, Jiuzhong & Pan, Yang & Lin, Zhenkun, 2020. "Upgrading of furans from in situ catalytic fast pyrolysis of xylan by reduced graphene oxide supported Pt nanoparticles," Renewable Energy, Elsevier, vol. 152(C), pages 94-101.
- Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
- Liu, Huiyu & Zhang, Jun & Shan, Rui & Yuan, Haoran & Chen, Yong, 2024. "Mechanistic insights into Ga-modified hollow ZSM-5 catalyzed fast pyrolysis of cassava residue," Energy, Elsevier, vol. 295(C).
- Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
- Chen, Guanyi & Tao, Junyu & Liu, Caixia & Yan, Beibei & Li, Wanqing & Li, Xiangping, 2017. "Hydrogen production via acetic acid steam reforming: A critical review on catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1091-1098.
- Leng, Lijian & Li, Tanghao & Zhan, Hao & Rizwan, Muhammad & Zhang, Weijin & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2023. "Machine learning-aided prediction of nitrogen heterocycles in bio-oil from the pyrolysis of biomass," Energy, Elsevier, vol. 278(PB).
- Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
- Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
- Yang, S.I. & Wu, M.S. & Hsu, T.C., 2017. "Experimental and numerical simulation study of oxycombustion of fast pyrolysis bio-oil from lignocellulosic biomass," Energy, Elsevier, vol. 126(C), pages 854-867.
- Goffé, Jonathan & Ferrasse, Jean-Henry, 2019. "Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels," Energy, Elsevier, vol. 170(C), pages 438-458.
- Yang, Hanmin & Cui, Yuxiao & Han, Tong & Sandström, Linda & Jönsson, Pär & Yang, Weihong, 2022. "High-purity syngas production by cascaded catalytic reforming of biomass pyrolysis vapors," Applied Energy, Elsevier, vol. 322(C).
- Im-orb, Karittha & Wiyaratn, Wisitsree & Arpornwichanop, Amornchai, 2018. "Technical and economic assessment of the pyrolysis and gasification integrated process for biomass conversion," Energy, Elsevier, vol. 153(C), pages 592-603.
- Mari Rowena C. Tanquilut & Homer C. Genuino & Erwin Wilbers & Rossana Marie C. Amongo & Delfin C. Suministrado & Kevin F. Yaptenco & Marilyn M. Elauria & Jessie C. Elauria & Hero J. Heeres, 2020. "Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis," Energies, MDPI, vol. 13(11), pages 1-19, June.
- Prosper Dzidzienyo & Juan-Rodrigo Bastidas-Oyanedel & Jens Ejbye Schmidt, 2018. "Pyrolysis Kinetics of the Arid Land Biomass Halophyte Salicornia Bigelovii and Phoenix Dactylifera Using Thermogravimetric Analysis," Energies, MDPI, vol. 11(9), pages 1-8, August.
- Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2017. "Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood," Energy, Elsevier, vol. 125(C), pages 552-561.
- Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
More about this item
Keywords
Pyrolysis; Cassava residue; Chemical pretreatment; Kinetics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:208:y:2020:i:c:s0360544220312998. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.