IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313219.html
   My bibliography  Save this article

Effect of heterogeneous tar condensation on coking pressure dynamics – Qualitative numerical analysis

Author

Listed:
  • Polesek-Karczewska, Sylwia
  • Kardaś, Dariusz
  • Wardach-Święcicka, Izabela

Abstract

Having regard to the practical role of predicting the peak pressure generation inside a coke oven and the demand for recognizing the factors affecting the pressure levels, the transient one-dimensional of thermal and flow processes in a coke oven charge was developed. Tar clogging the cavities between coal particles is considered a factor additional to low permeability of softened coal that may have an effect on pressure increase, however not yet enough described. In order to analyze this issue, the phase transition of heavier pyrolysis gas components was accounted for in the proposed model. Obtained computation results provide the numerical evidence for partial coal impregnation, experimentally revealed by other researchers, clearly indicating the appearance of tar condensation zone in the area of parent coal that is adjacent to coal plastic layer. The progress in tar accumulation accompanying the softened stage layer migration towards an oven center as the process proceeds, was demonstrated. The applied approach allowed to illustrate the change in pressure distribution within the coal/coke bed, reproducing an effect of gas flow blockage on the parent coal side due to reduced permeability of both layers, that of softened coal and that occupied by condensed tar.

Suggested Citation

  • Polesek-Karczewska, Sylwia & Kardaś, Dariusz & Wardach-Święcicka, Izabela, 2020. "Effect of heterogeneous tar condensation on coking pressure dynamics – Qualitative numerical analysis," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313219
    DOI: 10.1016/j.energy.2020.118214
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118214?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Changxin & Xie, Zhihui & Sun, Fengrui & Chen, Lingen, 2017. "Exergy analysis and optimization of coking process," Energy, Elsevier, vol. 139(C), pages 694-705.
    2. Yi, Lan & Feng, Jie & Li, Wen-Ying, 2019. "Evaluation on a combined model for low-rank coal pyrolysis," Energy, Elsevier, vol. 169(C), pages 1012-1021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wardach-Świȩcicka, Izabela & Kardaś, Dariusz, 2021. "Modelling thermal behaviour of a single solid particle pyrolysing in a hot gas flow," Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
    2. Radwan A. Almasri & A. F. Almarshoud & Hanafy M. Omar & Khaled Khodary Esmaeil & Mohammed Alshitawi, 2020. "Exergy and Economic Analysis of Energy Consumption in the Residential Sector of the Qassim Region in the Kingdom of Saudi Arabia," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    3. Qiu, Yuhang & Hui, Yunze & Zhao, Pengxiang & Cai, Cheng-Hao & Dai, Baiqian & Dou, Jinxiao & Bhattacharya, Sankar & Yu, Jianglong, 2024. "A novel image expression-driven modeling strategy for coke quality prediction in the smart cokemaking process," Energy, Elsevier, vol. 294(C).
    4. Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
    5. Xin, Lin & An, Mingyu & Feng, Mingze & Li, Kaixuan & Cheng, Weimin & Liu, Weitao & Hu, Xiangming & Wang, Zhigang & Han, Limin, 2021. "Study on pyrolysis characteristics of lump coal in the context of underground coal gasification," Energy, Elsevier, vol. 237(C).
    6. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & Yuan, Yuxing & Du, Tao, 2022. "Optimization of energy efficiency, energy consumption and CO2 emission in typical iron and steel manufacturing process," Energy, Elsevier, vol. 257(C).
    7. Wang, Lili & Zhao, Jun & Teng, Junfeng & Dong, Shilong & Wang, Yinglong & Xiang, Shuguang & Sun, Xiaoyan, 2022. "Study on an energy-saving process for separation ethylene elycol mixture through heat-pump, heat-integration and ORC driven by waste-heat," Energy, Elsevier, vol. 243(C).
    8. Na, Hongming & Sun, Jingchao & Qiu, Ziyang & He, Jianfei & Yuan, Yuxing & Yan, Tianyi & Du, Tao, 2021. "A novel evaluation method for energy efficiency of process industry — A case study of typical iron and steel manufacturing process," Energy, Elsevier, vol. 233(C).
    9. Yang, Qingchun & Zhang, Dawei & Zhou, Huairong & Zhang, Chenwei, 2018. "Process simulation, analysis and optimization of a coal to ethylene glycol process," Energy, Elsevier, vol. 155(C), pages 521-534.
    10. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Haolie li, & Shen, Shuguang & Shi, Zhaoyi & Shan, Weiwei & Chang, Sujie & Guo, Chenyuan & Bai, Yonghui & Yan, Lunjing & li, Fan, 2019. "Effect of the upstream gas on the evolved coal gas in the dry distillation zone of the fixed bed gasifier," Energy, Elsevier, vol. 180(C), pages 421-428.
    12. Hong, Dikun & Li, Ping & Si, Ting & Guo, Xin, 2021. "ReaxFF simulations of the synergistic effect mechanisms during co-pyrolysis of coal and polyethylene/polystyrene," Energy, Elsevier, vol. 218(C).
    13. Chen, Jingwei & Huang, Yizhen & Liu, Yang & Jiaqiang, E., 2024. "System development and thermodynamic performance analysis of a system integrating supercritical water gasification of black liquor with direct-reduced iron process," Energy, Elsevier, vol. 295(C).
    14. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    15. Li, Zhenbao & Wang, Fengshuang & Wei, Yongqiao & Liang, Rui & Gao, Wei & Zhang, Xiaofeng, 2022. "Thermokinetic analysis of low-rank bituminous coal during low-temperature oxidation: A case study of the Jurassic coal in Shendong coalfield, Ordos Basin, China," Energy, Elsevier, vol. 244(PB).
    16. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    17. Huo, Hailong & Liu, Xunliang & Wen, Zhi & Lou, Guofeng & Dou, Ruifeng & Su, Fuyong & Zhou, Wenning & Jiang, Zeyi, 2021. "Case study of a novel low rank coal to calcium carbide process based on techno-economic assessment," Energy, Elsevier, vol. 228(C).
    18. Mohamadi-Baghmolaei, Mohamad & Hajizadeh, Abdollah & Zahedizadeh, Parviz & Azin, Reza & Zendehboudi, Sohrab, 2021. "Evaluation of hybridized performance of amine scrubbing plant based on exergy, energy, environmental, and economic prospects: A gas sweetening plant case study," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.