IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v207y2020ics0360544220313098.html
   My bibliography  Save this article

Condensation heat transfer characteristics of moist air outside 3-D finned tubes with different wettability

Author

Listed:
  • Gu, Yuheng
  • Ding, Yudong
  • Liao, Qiang
  • Fu, Qian
  • Zhu, Xun
  • Wang, Hong

Abstract

The condensation heat transfer of moist air plays an important role in industries and daily life. However, the presence of non-condensable gases makes it difficult for steam to condensate on a cooling surface. According to previous studies, a three-dimensional (3-D) finned tube and dropwise condensation can both increase the heat transfer performance. To increase the condensation heat transfer of moist air, this study combined these two methods and experimentally studied the condensation heat transfer of moist air outside 3-D finned tubes with different wettability values. The effects of the 3-D fins and surface wettability on the heat transfer process under different steam mole fractions, moist air temperatures, and cooling water inlet temperatures were determined and analysed in detail. The experimental results showed that a hydrophilic 3-D finned tube could achieve the highest heat transfer coefficient, which was up to 94% higher than that of a hydrophilic smooth tube. In addition, the heat flux and heat transfer coefficient increased with decreases in the moist air temperature and cooling water inlet temperature, or with an increase in the steam mole fraction. Droplet retained between 3-D fins increased the diffusion resistance of water steam and the conductive thermal resistance.

Suggested Citation

  • Gu, Yuheng & Ding, Yudong & Liao, Qiang & Fu, Qian & Zhu, Xun & Wang, Hong, 2020. "Condensation heat transfer characteristics of moist air outside 3-D finned tubes with different wettability," Energy, Elsevier, vol. 207(C).
  • Handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313098
    DOI: 10.1016/j.energy.2020.118202
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220313098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118202?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weber, C & Gebhardt, B & Fahl, U, 2002. "Market transformation for energy efficient technologies — success factors and empirical evidence for gas condensing boilers," Energy, Elsevier, vol. 27(3), pages 287-315.
    2. Nagarani, N. & Mayilsamy, K. & Murugesan, A. & Kumar, G. Sathesh, 2014. "Review of utilization of extended surfaces in heat transfer problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 604-613.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siavashi, Javad & Mahdaviara, Mehdi & Shojaei, Mohammad Javad & Sharifi, Mohammad & Blunt, Martin J., 2024. "Segmentation of two-phase flow X-ray tomography images to determine contact angle using deep autoencoders," Energy, Elsevier, vol. 288(C).
    2. Ding, Yudong & Zhang, Wenhe & Deng, Bin & Gu, Yuheng & Liao, Qiang & Long, Zhenze & Zhu, Xun, 2022. "Experimental and numerical investigation on natural convection heat transfer characteristics of vertical 3-D externally finned tubes," Energy, Elsevier, vol. 239(PB).
    3. Yu Gao & Hong Cheng & Wei Li & David John Kukulka & Rick Smith, 2022. "Condensation Flow and Heat Transfer Characteristics of R410A in Micro-Fin Tubes and Three-Dimensional Surface Enhanced Tubes," Energies, MDPI, vol. 15(8), pages 1-20, April.
    4. Sterkhov, K.V. & Khokhlov, D.A. & Zaichenko, M.N., 2024. "Zero carbon emission CCGT power plant with integrated solid fuel gasification," Energy, Elsevier, vol. 294(C).
    5. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Baginski & Christoph Weber, 2017. "A Consumer Decision-making Process? Unfolding Energy Efficiency Decisions of German Owner-occupiers," EWL Working Papers 1708, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Aug 2017.
    2. Devenish, Anna & Lockwood, Matthew, 2024. "Locally-led governance of residential heat transitions: Emerging experience of and lessons from the Dutch approach," Energy Policy, Elsevier, vol. 187(C).
    3. Shang, Sheng & Li, Xianting & Chen, Wei & Wang, Baolong & Shi, Wenxing, 2017. "A total heat recovery system between the flue gas and oxidizing air of a gas-fired boiler using a non-contact total heat exchanger," Applied Energy, Elsevier, vol. 207(C), pages 613-623.
    4. Hinrichs, Jörn & Felsmann, Daniel & Schweitzer-De Bortoli, Stefan & Tomczak, Heinz-Jörg & Pitsch, Heinz, 2018. "Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler," Applied Energy, Elsevier, vol. 229(C), pages 977-989.
    5. Weiss, Martin & Dittmar, Lars & Junginger, Martin & Patel, Martin K. & Blok, Kornelis, 2009. "Market diffusion, technological learning, and cost-benefit dynamics of condensing gas boilers in the Netherlands," Energy Policy, Elsevier, vol. 37(8), pages 2962-2976, August.
    6. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    7. Piotr Ziembicki & Joachim Kozioł & Jan Bernasiński & Ireneusz Nowogoński, 2019. "Innovative System for Heat Recovery and Combustion Gas Cleaning," Energies, MDPI, vol. 12(22), pages 1-13, November.
    8. Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
    9. Razak, A.A. & Majid, Z.A.A. & Azmi, W.H. & Ruslan, M.H. & Choobchian, Sh. & Najafi, G. & Sopian, K., 2016. "Review on matrix thermal absorber designs for solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 682-693.
    10. Mushtaq T. Al-Asadi & Hussein A. Mohammed & Mark C. T. Wilson, 2022. "Heat Transfer Characteristics of Conventional Fluids and Nanofluids in Micro-Channels with Vortex Generators: A Review," Energies, MDPI, vol. 15(3), pages 1-34, February.
    11. Saberi Moghaddam, Mohammad Hossein & Saei Moghaddam, Mojtaba & Khorramdel, Mohammad, 2017. "Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner," Energy, Elsevier, vol. 125(C), pages 654-662.
    12. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    13. Lee, Seungro & Kum, Sung-Min & Lee, Chang-Eon, 2011. "An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler," Energy, Elsevier, vol. 36(7), pages 4150-4157.
    14. Chen, Wei & Shi, Wenxing & Li, Xianting & Wang, Baolong & Cao, Yang, 2020. "Application of optimization method based on discretized thermal energy in condensing heat recovery system of combined heat and power plant," Energy, Elsevier, vol. 213(C).
    15. Mangrulkar, Chidanand K. & Dhoble, Ashwinkumar S. & Chamoli, Sunil & Gupta, Ashutosh & Gawande, Vipin B., 2019. "Recent advancement in heat transfer and fluid flow characteristics in cross flow heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:207:y:2020:i:c:s0360544220313098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.