IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i24p10621-d464819.html
   My bibliography  Save this article

Reserves Estimation for Coalbed Methane Reservoirs: A Review

Author

Listed:
  • Ali Altowilib

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Ahmed AlSaihati

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Hussain Alhamood

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Saad Alafnan

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

  • Sulaiman Alarifi

    (College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia)

Abstract

A continuous growth in the global economy and population requires a sustainable energy supply. Maximizing recovery factor out of the naturally occurring hydrocarbons resources has been an active area of continuous development to meet the globally increasing demand for energy. Coalbed methane (CBM), which is one of the primary resources of natural gas, associates complex storage mechanisms and requires some advanced recovery techniques, rendering conventional reserve assessment methods insufficient. This work presents a literature review on CBM in different aspects. This includes rock characteristics such as porosity, permeability, adsorption capacity, adsorption isotherm, and coal classification. In addition, CBM reservoirs are compared to conventional reservoirs in terms of reservoir quality, reservoir properties, accumulation, and water/gas saturation and production. Different topics that contribute to the production of CBM reservoirs are also discussed. This includes production mechanisms, well spacing, well completion, and petrophysical interpretations. The main part of this work sheds a light on the available techniques to determine initial-gas-in-place in CBM reservoirs such as volumetric, decline curve, and material balance. It also presents the pros and cons of each technique. Lastly, common development and economic challenges in CBM fields are listed in addition to environmental concerns.

Suggested Citation

  • Ali Altowilib & Ahmed AlSaihati & Hussain Alhamood & Saad Alafnan & Sulaiman Alarifi, 2020. "Reserves Estimation for Coalbed Methane Reservoirs: A Review," Sustainability, MDPI, vol. 12(24), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10621-:d:464819
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/24/10621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/24/10621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Jia & Ren, Ting & Cheng, Yuanping & Nemcik, Jan & Wang, Gongda, 2019. "Cyclic N2 injection for enhanced coal seam gas recovery: A laboratory study," Energy, Elsevier, vol. 188(C).
    2. Abdulrahman, Muhammed Moshin & Meribout, Mahmoud, 2014. "Antenna array design for enhanced oil recovery under oil reservoir constraints with experimental validation," Energy, Elsevier, vol. 66(C), pages 868-880.
    3. Saad Alafnan & Murtada Aljawad & Guenther Glatz & Abdullah Sultan & Rene Windiks, 2020. "Sustainable Production from Shale Gas Resources through Heat-Assisted Depletion," Sustainability, MDPI, vol. 12(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim A. Moore & Mike C. Friederich, 2021. "Defining Uncertainty: Comparing Resource/Reserve Classification Systems for Coal and Coal Seam Gas," Energies, MDPI, vol. 14(19), pages 1-35, September.
    2. Sergey Slastunov & Konstantin Kolikov & Andrian Batugin & Anatoly Sadov & Adam Khautiev, 2022. "Improvement of Intensive In-Seam Gas Drainage Technology at Kirova Mine in Kuznetsk Coal Basin," Energies, MDPI, vol. 15(3), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    2. Yue, Jiwei & Wang, Chen & Shi, Biming & Sun, Yongxin & Han, Qijun & Liang, Yuehui & Xu, Jinlin, 2024. "Gas desorption characteristics in different stages for retained water infiltration gas-bearing coal and its influence mechanism," Energy, Elsevier, vol. 293(C).
    3. Wang, Gang & Xie, Shuliang & Huang, Qiming & Wang, Enmao & Wang, Shuxin, 2023. "Study on the performances of fluorescent tracers for the wetting area detection of coal seam water injection," Energy, Elsevier, vol. 263(PE).
    4. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Fully Coupled Numerical Model for Microwave Heating Enhanced Shale Gas Recovery," Energies, MDPI, vol. 11(6), pages 1-28, June.
    5. Xu, Chao & Wang, Wenjing & Wang, Kai & Zhou, Aitao & Guo, Lin & Yang, Tong, 2023. "Filling–adsorption mechanism and diffusive transport characteristics of N2/CO2 in coal: Experiment and molecular simulation," Energy, Elsevier, vol. 282(C).
    6. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    7. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    8. Zhenni Ye & Xiaoli Liu & Huan Sun & Qinxi Dong & Weisheng Du & Qijian Long, 2022. "Variations in Permeability and Mechanical Properties of Basaltic Rocks Induced by Carbon Mineralization," Sustainability, MDPI, vol. 14(22), pages 1-18, November.
    9. Yang, Xin & Wang, Gongda & Du, Feng & Jin, Longzhe & Gong, Haoran, 2022. "N2 injection to enhance coal seam gas drainage (N2-ECGD): Insights from underground field trial investigation," Energy, Elsevier, vol. 239(PC).
    10. Huang, Haiping & Wang, Eric, 2020. "A laboratory investigation of the impact of solvent treatment on the permeability of bituminous coal from Western Canada with a focus on microbial in-situ processing of coals," Energy, Elsevier, vol. 210(C).
    11. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    12. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    13. Bai, Gang & Su, Jun & Zhang, Zunguo & Lan, Anchang & Zhou, Xihua & Gao, Fei & Zhou, Jianbin, 2022. "Effect of CO2 injection on CH4 desorption rate in poor permeability coal seams: An experimental study," Energy, Elsevier, vol. 238(PA).
    14. Liu, Jia & Xue, Yi & Fu, Yong & Yao, Kai & Liu, Jianqiang, 2023. "Numerical investigation on microwave-thermal recovery of shale gas based on a fully coupled electromagnetic, heat transfer, and multiphase flow model," Energy, Elsevier, vol. 263(PE).
    15. Zhengbin Wu & Hanzhao Chen & Xidong Cai & Qiyang Gou & Liangliang Jiang & Kai Chen & Zhangxin Chen & Shu Jiang, 2023. "Current Status and Future Trends of In Situ Catalytic Upgrading of Extra Heavy Oil," Energies, MDPI, vol. 16(12), pages 1-29, June.
    16. Chen, Min & Geng, Jianhua & Cui, Linyong & Xu, Fengyin & Thomas, Hywel, 2024. "Evaluation of CO2-enhanced gas recovery and storage through coupled non-isothermal compositional two-phase flow and geomechanics modelling," Energy, Elsevier, vol. 305(C).
    17. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    18. Bai, Yang & Lin, Hai-Fei & Li, Shu-Gang & Long, Hang & Yan, Min & Li, Yong & Qin, Lei & Zhou, Bin, 2022. "Experimental study on kinetic characteristics of gas diffusion in coal under nitrogen injection," Energy, Elsevier, vol. 254(PA).
    19. Long, Keji & Tang, Yong & He, Youwei & Luo, Yulong & Hong, Yinghe & Sun, Yu & Rui, Zhenhua, 2024. "Full-cycle enhancing condensate recovery-underground gas storage by integrating cyclic gas flooding and storage from gas condensate reservoirs," Energy, Elsevier, vol. 293(C).
    20. Li, Jun & Huang, Qiming & Wang, Gang & Wang, Enmao & Ju, Shuang & Qin, Cunli, 2022. "Experimental study of effect of slickwater fracturing on coal pore structure and methane adsorption," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:24:p:10621-:d:464819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.