IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017741.html
   My bibliography  Save this article

Critical parameters investigation of rock breaking by high-pressure foam fracturing method

Author

Listed:
  • Cui, Song
  • Liu, Songyong
  • Li, Hongsheng
  • Zhou, Fangyue
  • Sun, Dunkai

Abstract

As a new and mild rock breaking method between blasting method with high stress loading rate and hydraulic fracturing method with low stress loading rate, high-pressure foam fracturing method has advantages of no spark, less dust, no harmful gas, controllable breaking shape and so on. In this paper, the rock breaking characteristics of 700 × 700 × 700 mm rock samples were studied by using high-pressure foam fracturing device. The influence of borehole depth, seal length and foam pressure on rock breaking were analyzed. The results show that the rock breaking weight increases with an increase of borehole depth and foam pressure, and decreases first and then increases with a decrease of seal length. When the borehole depth is 100–120 mm, the seal length is 30–10 mm and the foam pressure is 15–16.5 MPa, the failure mode of rock changed from blast crater to stripping large stone. These results have certain guiding value for revealing the rock breaking mechanism and engineering application by high-pressure foam fracturing method.

Suggested Citation

  • Cui, Song & Liu, Songyong & Li, Hongsheng & Zhou, Fangyue & Sun, Dunkai, 2022. "Critical parameters investigation of rock breaking by high-pressure foam fracturing method," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017741
    DOI: 10.1016/j.energy.2022.124871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qingying Cheng & Bingxiang Huang & Luying Shao & Xinglong Zhao & Shuliang Chen & Haoze Li & Changwei Wang, 2020. "Combination of Pre-Pulse and Constant Pumping Rate Hydraulic Fracturing for Weakening Hard Coal and Rock Mass," Energies, MDPI, vol. 13(21), pages 1-22, October.
    2. He, Jianming & Li, Xiao & Yin, Chao & Zhang, Yixiang & Lin, Chong, 2020. "Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale," Energy, Elsevier, vol. 191(C).
    3. Liu, Zhaoyi & Pan, Zhejun & Li, Shibin & Zhang, Ligang & Wang, Fengshan & Han, Lingling & Zhang, Jun & Ma, Yuanyuan & Li, Hao & Li, Wei, 2022. "Study on the effect of cemented natural fractures on hydraulic fracture propagation in volcanic reservoirs," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Zhongjun & Zheng, Yanlong & Li, Jianchun & Zhao, Xiaobao & Zhao, Jian, 2024. "Enhancing rock breakage efficiency by microwave fracturing: A study on antenna selection," Energy, Elsevier, vol. 288(C).
    2. Yansong Zhang & Li Cai & Jing Shi & Xiangrui Wei, 2022. "Study on Physicochemical Properties and Rock-Cracking Mechanism of High-Energy Expansion Agent," Energies, MDPI, vol. 15(19), pages 1-17, September.
    3. Zhou, Yu & Lv, Wenjun & Zhang, Cheng & Zhou, Zihan & Wang, Hongyu & Liang, Qinyuan & Tang, Qiongqiong & Han, Guansheng & Guo, Wei & Zhao, Dajun, 2024. "Novel hard rock breaking technique using ultra-high-frequency particle impact induced by ultrasonic vibration field," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Lei & Wu, Shan & Gao, Ke & Shen, Luming, 2022. "Simultaneous propagation of hydraulic fractures from multiple perforation clusters in layered tight reservoirs: Non-planar three-dimensional modelling," Energy, Elsevier, vol. 254(PC).
    2. Wang, Chongyang & Zhang, Dongming & Liu, Chenxi & Pan, Yisha & Jiang, Zhigang & Yu, Beichen & Lin, Yun, 2023. "Deformation and seepage characteristics of water-saturated shale under true triaxial stress," Energy, Elsevier, vol. 284(C).
    3. Liang, Cun-Guang & Guo, Ze-Shi & Yue, Xiu & Li, Hui & Ma, Peng-Cheng, 2023. "Microwave-assisted breakage of basalt: A viewpoint on analyzing the thermal and mechanical behavior of rock," Energy, Elsevier, vol. 273(C).
    4. Jiang, Xingwen & Chen, Mian & Li, Qinghui & Liang, Lihao & Zhong, Zhen & Yu, Bo & Wen, Hang, 2022. "Study on the feasibility of the heat treatment after shale gas reservoir hydration fracturing," Energy, Elsevier, vol. 254(PB).
    5. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    6. Jiewen Pang & Jianlin Xie & Yongliang He & Qiaoyun Han & Yongjiang Hao, 2023. "Study on the Distribution Trend of Rockburst and Ground Stress in the Hegang Mining Area," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    7. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    8. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    9. Zheng, Peng & Xia, Yucheng & Yao, Tingwei & Jiang, Xu & Xiao, Peiyao & He, Zexuan & Zhou, Desheng, 2022. "Formation mechanisms of hydraulic fracture network based on fracture interaction," Energy, Elsevier, vol. 243(C).
    10. Wenda Wu & Guorui Feng & Xiuxiu Yu & Jianbiao Bai & Xiangyu Wang & Xiangzhuo Zhao, 2023. "Investigation into Pressure Appearances and Hydraulic Fracturing Roof-Cutting Technology in Mining Working Face under Residual Pillars: A Case Study," Energies, MDPI, vol. 16(9), pages 1-17, May.
    11. Pahari, Silabrata & Bhandakkar, Parth & Akbulut, Mustafa & Sang-Il Kwon, Joseph, 2021. "Optimal pumping schedule with high-viscosity gel for uniform distribution of proppant in unconventional reservoirs," Energy, Elsevier, vol. 216(C).
    12. Song Wang & Jian Zhou & Luqing Zhang & Zhenhua Han, 2020. "Numerical Investigation of Injection-Induced Fracture Propagation in Brittle Rocks with Two Injection Wells by a Modified Fluid-Mechanical Coupling Model," Energies, MDPI, vol. 13(18), pages 1-26, September.
    13. Wu, Yining & Yan, Xiang & Huang, Yongping & Zhao, Mingwei & Zhang, Liyuan & Dai, Caili, 2024. "Ultra-deep reservoirs gel fracturing fluid with stepwise reinforcement network from supramolecular force to chemical crosslinking," Energy, Elsevier, vol. 293(C).
    14. Lei, Jian & Pan, Baozhi & Guo, Yuhang & Fan, YuFei & Xue, Linfu & Deng, Sunhua & Zhang, Lihua & Ruhan, A., 2021. "A comprehensive analysis of the pyrolysis effects on oil shale pore structures at multiscale using different measurement methods," Energy, Elsevier, vol. 227(C).
    15. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    16. Hanrui Zhang & Changyou Liu & Zhenhua Chen & Xin Yu & Kun Zhang & Huaidong Liu, 2023. "Analysis and Application of Hydraulic Fracturing to Control Hard and Stable Roof in Initial Mining Stage," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    17. Qiuyang Cheng & Lijun You & Na Jia & Yili Kang & Cheng Chang & Weiyang Xie, 2023. "New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids," Energies, MDPI, vol. 16(11), pages 1-25, May.
    18. Qingyu Zhang & Guanglin Wang & Xudong Pan & Yuefeng Li & Jianqi He & Yue Qi & Juesuan Yang, 2023. "High Voltage Electric Pulse Drilling: A Study of Variables through Simulation and Experimental Tests," Energies, MDPI, vol. 16(3), pages 1-17, January.
    19. Dong, Fangying & Yin, Huiyong & Cheng, Wenju & Zhang, Chao & Zhang, Danyang & Ding, Haixiao & Lu, Chang & Wang, Yin, 2024. "Quantitative prediction model and prewarning system of water yield capacity (WYC) from coal seam roof based on deep learning and joint advanced detection," Energy, Elsevier, vol. 290(C).
    20. Zhiming Hu & Ying Mu & Qiulei Guo & Wente Niu & Xianggang Duan & Jin Chang & Zhenkai Wu, 2022. "Occurrence and Migration Mechanisms of Methane in Marine Shale Reservoirs," Energies, MDPI, vol. 15(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.