IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309798.html
   My bibliography  Save this article

Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology

Author

Listed:
  • Fakayode, Olugbenga Abiola
  • Aboagarib, Elmuez Alsir Ahmed
  • Yan, Dong
  • Li, Mo
  • Wahia, Hafida
  • Mustapha, Abdullateef Taiye
  • Zhou, Cunshan
  • Ma, Haile

Abstract

Sequential delignification of watermelon rind using ultrasonication and deep eutectic solvent (DES) pretreatment methods was demonstrated in this study. The effects of pretreatment factors on delignification were investigated using parametric screening and subsequent optimization of significant factors. Plackett–Burman Design was used for the screening of pretreatment variables, while optimization was performed adopting Central Composite Rotatable Design. For the range of variables considered in the study, the screening experiments revealed that the effects of ultrasonication power, ultrasonication frequency, ultrasonication time, DES reaction temperature and DES reaction time on delignification were significant, while the effects of ultrasonication solid-liquid ratio, ultrasonication temperature, hydrogen bond acceptor/hydrogen bond donor molar ratio, and DES solid-to-liquid ratio were not significant. The significant factors were further investigated and maximum lignin removal of 43.56 % was achieved at ultrasonication power 180 W, ultrasonication frequency 60 kHz, ultrasonication time 40 min, reaction temperature 120°C and reaction time 180 min. Synergistic effect between the two pretreatment methods was observed and it correlated positively with the severity of the ultrasound pretreatment. The SEM and FTIR analyses further established the effectiveness of the sequential combinative pretreatment methods on watermelon rind delignification.

Suggested Citation

  • Fakayode, Olugbenga Abiola & Aboagarib, Elmuez Alsir Ahmed & Yan, Dong & Li, Mo & Wahia, Hafida & Mustapha, Abdullateef Taiye & Zhou, Cunshan & Ma, Haile, 2020. "Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309798
    DOI: 10.1016/j.energy.2020.117872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309798
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karimi, Mahmoud & Jenkins, Bryan & Stroeve, Pieter, 2014. "Ultrasound irradiation in the production of ethanol from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 400-421.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Mian & Zhu, Xianqing & Lai, Yiming & Xia, Ao & Huang, Yun & Zhu, Xun & Liao, Qiang, 2024. "Production of hierarchical porous bio‑carbon based on deep eutectic solvent fractionated lignin nanoparticles for high-performance supercapacitor," Applied Energy, Elsevier, vol. 353(PA).
    2. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Krishnamoorthy, Amarnath & Rodriguez, Cristina & Durrant, Andy, 2023. "Optimisation of ultrasonication pretreatment on microalgae Chlorella Vulgaris & Nannochloropsis Oculata for lipid extraction in biodiesel production," Energy, Elsevier, vol. 278(PB).
    4. Fakayode, Olugbenga Abiola & Akpabli-Tsigbe, Nelson Dzidzorgbe Kwaku & Wahia, Hafida & Tu, Shanshan & Ren, Manni & Zhou, Cunshan & Ma, Haile, 2021. "Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation," Renewable Energy, Elsevier, vol. 180(C), pages 258-270.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fakayode, Olugbenga Abiola & Akpabli-Tsigbe, Nelson Dzidzorgbe Kwaku & Wahia, Hafida & Tu, Shanshan & Ren, Manni & Zhou, Cunshan & Ma, Haile, 2021. "Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation," Renewable Energy, Elsevier, vol. 180(C), pages 258-270.
    2. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Rasouli, Hamed & Rafiee, Mojtaba & Hadipour, Mehrdad & Karimi, Mahmoud, 2020. "Experimental exergy analysis of transesterification in biodiesel production," Energy, Elsevier, vol. 196(C).
    3. Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.