IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014567.html
   My bibliography  Save this article

Effect of alkaline deep eutectic solvents pretreatment on CH4 yield from anaerobic digestion of corn stover

Author

Listed:
  • Sha, Hao
  • Cao, Shengxian
  • Zhao, Bo
  • Dong, Zheng
  • Wang, Gong
  • Duan, Jie

Abstract

Deep eutectic solvents (DES), comprising hydrogen bond donors (HBD) and acceptors (HBA), are gaining prominence in biomass pretreatment due to their excellent lignin depolymerization capabilities. This study explored the impact of alkaline DES pretreatment, specifically focusing on CH4 yield from corn stover anaerobic digestion. Batch experiments were conducted to assess the influence of ethylene glycol (EG) concentration, pretreatment time, and organic loading rate (OLR) on CH4 yield. Results indicated that these factors markedly affected the cumulative CH4 yield. Subsequent optimization using Box-Behnken design (BBD) significantly enhanced the CH4 yield by 1.16 times, achieving the optimal conditions at 0.4 v/v EG concentration, 33.8 min of pretreatment, and 22.2 w/v OLR. Notably, DMER64 and Methanobacterium emerged as the dominant bacterial and archaeal communities, constituting 40.2 % and 71.9 % respectively. Spearman correlation analysis underscored that enhanced substrate accessibility fostered a hydrogen-based, CH4-producing synergistic metabolic pathway. Alkaline DES pretreatment notably resulted in 20.5 % of the carbon flow being directed to CH4, demonstrating its efficacy in converting corn stover into a viable clean energy source and mitigating the environmental impact of agricultural waste.

Suggested Citation

  • Sha, Hao & Cao, Shengxian & Zhao, Bo & Dong, Zheng & Wang, Gong & Duan, Jie, 2024. "Effect of alkaline deep eutectic solvents pretreatment on CH4 yield from anaerobic digestion of corn stover," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014567
    DOI: 10.1016/j.energy.2024.131683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).
    2. Liu, Zhen & Saydaliev, Hayot Berk & Lan, Jing & Ali, Sajid & Anser, Muhammad Khalid, 2022. "Assessing the effectiveness of biomass energy in mitigating CO2 emissions: Evidence from Top-10 biomass energy consumer countries," Renewable Energy, Elsevier, vol. 191(C), pages 842-851.
    3. Zhao, Bo & Zheng, Pengfei & Yang, Yuyi & Sha, Hao & Cao, Shengxian & Wang, Gong & Zhang, Yanhui, 2022. "Enhanced anaerobic digestion under medium temperature conditions: Augmentation effect of magnetic field and composites formed by titanium dioxide on the foamed nickel," Energy, Elsevier, vol. 257(C).
    4. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    5. Sha, Hao & Wang, Qing & Dong, Zheng & Cao, Shengxian & Zhao, Bo & Wang, Gong & Duan, Jie, 2024. "NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover," Energy, Elsevier, vol. 288(C).
    6. Fakayode, Olugbenga Abiola & Aboagarib, Elmuez Alsir Ahmed & Yan, Dong & Li, Mo & Wahia, Hafida & Mustapha, Abdullateef Taiye & Zhou, Cunshan & Ma, Haile, 2020. "Novel two-pot approach ultrasonication and deep eutectic solvent pretreatments for watermelon rind delignification: Parametric screening and optimization via response surface methodology," Energy, Elsevier, vol. 203(C).
    7. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    8. Rajaeifar, Mohammad Ali & Ghanavati, Hossein & Dashti, Behrouz B. & Heijungs, Reinout & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2017. "Electricity generation and GHG emission reduction potentials through different municipal solid waste management technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 414-439.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sha, Hao & Wang, Qing & Dong, Zheng & Cao, Shengxian & Zhao, Bo & Wang, Gong & Duan, Jie, 2024. "NaOH-urea pretreatment enhanced H2 and CH4 yields via optimizing mixed alkali ratio, pretreatment time, and organic loading rate during anaerobic digestion of corn stover," Energy, Elsevier, vol. 288(C).
    2. Sha, Hao & Zhao, Bo & Yang, Yuyi & Zhang, Yanhui & Zheng, Pengfei & Cao, Shengxian & Wang, Qing & Wang, Gong, 2023. "Enhanced anaerobic digestion of corn stover using magnetized cellulase combined with Ni-graphite coating," Energy, Elsevier, vol. 262(PB).
    3. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    4. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    6. Wang, Yongli & Guo, Lu & Wang, Yanan & Zhang, Yunfei & Zhang, Siwen & Liu, Zeqiang & Xing, Juntai & Liu, Ximei, 2024. "Bi-level programming optimization method of rural integrated energy system based on coupling coordination degree of energy equipment," Energy, Elsevier, vol. 298(C).
    7. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Khounani, Zahra & Hosseinzadeh-Bandbafha, Homa & Nizami, Abdul-Sattar & Sulaiman, Alawi & Goli, Sayed Amir Hossein & Tavassoli-Kafrani, Elham & Ghaffari, Akram & Rajaeifar, Mohammad Ali & Kim, Ki-Hyun, 2020. "Unlocking the potential of walnut husk extract in the production of waste cooking oil-based biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Vadikkeettil, Yugesh & Subramaniam, Yugeswaran & Murugan, Ramaswamy & Ananthapadmanabhan, P.V. & Mostaghimi, Javad & Pershin, Larry & Batiot-Dupeyrat, Catherine & Kobayashi, Yasukazu, 2022. "Plasma assisted decomposition and reforming of greenhouse gases: A review of current status and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Kirikkaleli, Dervis, 2023. "Resource efficiency, energy productivity, and environmental quality in Japan," Resources Policy, Elsevier, vol. 85(PB).
    12. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    13. Tomić, Tihomir & Schneider, Daniel Rolph, 2018. "The role of energy from waste in circular economy and closing the loop concept – Energy analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 268-287.
    14. Robert Czubaszek & Agnieszka Wysocka-Czubaszek & Piotr Banaszuk & Grzegorz Zając & Martin J. Wassen, 2023. "Grass from Road Verges as a Substrate for Biogas Production," Energies, MDPI, vol. 16(11), pages 1-23, June.
    15. Junhan Huang & Rui Zhao & Tao Huang & Xiaoqian Wang & Ming-Lang Tseng, 2018. "Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    16. Aghbashlo, Mortaza & Tabatabaei, Meisam & Amid, Sama & Hosseinzadeh-Bandbafha, Homa & Khoshnevisan, Benyamin & Kianian, Ghaem, 2020. "Life cycle assessment analysis of an ultrasound-assisted system converting waste cooking oil into biodiesel," Renewable Energy, Elsevier, vol. 151(C), pages 1352-1364.
    17. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    18. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.
    19. Akan, Taner, 2023. "Can renewable energy mitigate the impacts of inflation and policy interest on climate change?," Renewable Energy, Elsevier, vol. 214(C), pages 255-289.
    20. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.