IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309257.html
   My bibliography  Save this article

Characteristics and variability of the nearshore wave resource on the U.S. West Coast

Author

Listed:
  • Yang, Zhaoqing
  • García-Medina, Gabriel
  • Wu, Wei-Cheng
  • Wang, Taiping

Abstract

Characterizing the nearshore wave resource at a regional scale poses a great challenge because high-quality wave data are required. This paper presents a detailed analysis of nearshore wave climate and resource characterization on the U.S. West Coast based on a 32-year, regional wave hindcast. Resource characterization closely followed the International Electrotechnical Commission standards. The wave hindcast data were generated from an unstructured-grid SWAN model with approximately 300 m grid resolution in the nearshore region. Statistics of six IEC wave resource parameters at the 50 m water depth were calculated for four sub-regions along the coast, including Washington, Oregon, and Northern and Southern California. Results indicate that the Washington and Oregon coast has a similar nearshore wave resource. The wave resource in Southern California is significantly less than that of the Washington and Oregon coast. Alongshore and cross-shore variabilities of wave power were assessed. Temporal variability, at seasonal, inter-annual, and decadal scales were analyzed. Overall, strong seasonal variation is observed; high wave energy occurs in the winter months and calm seas in the summer. Finally, extreme environmental conditions, i.e., the 100-year extreme environmental contours, for different locations along the West Coast were investigated.

Suggested Citation

  • Yang, Zhaoqing & García-Medina, Gabriel & Wu, Wei-Cheng & Wang, Taiping, 2020. "Characteristics and variability of the nearshore wave resource on the U.S. West Coast," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309257
    DOI: 10.1016/j.energy.2020.117818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hughes, Michael G. & Heap, Andrew D., 2010. "National-scale wave energy resource assessment for Australia," Renewable Energy, Elsevier, vol. 35(8), pages 1783-1791.
    2. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    3. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2020. "Wave energy assessment based on a 33-year hindcast for the Canary Islands," Renewable Energy, Elsevier, vol. 152(C), pages 259-269.
    4. Guillou, Nicolas & Chapalain, Georges, 2015. "Numerical modelling of nearshore wave energy resource in the Sea of Iroise," Renewable Energy, Elsevier, vol. 83(C), pages 942-953.
    5. Ramos, V. & Ringwood, John V., 2016. "Exploring the utility and effectiveness of the IEC (International Electrotechnical Commission) wave energy resource assessment and characterisation standard: A case study," Energy, Elsevier, vol. 107(C), pages 668-682.
    6. Yang, Zhaoqing & Neary, Vincent S. & Wang, Taiping & Gunawan, Budi & Dallman, Annie R. & Wu, Wei-Cheng, 2017. "A wave model test bed study for wave energy resource characterization," Renewable Energy, Elsevier, vol. 114(PA), pages 132-144.
    7. Robertson, Bryson R.D. & Hiles, Clayton E. & Buckham, Bradley J., 2014. "Characterizing the near shore wave energy resource on the west coast of Vancouver Island, Canada," Renewable Energy, Elsevier, vol. 71(C), pages 665-678.
    8. Hemer, Mark A. & Zieger, Stefan & Durrant, Tom & O'Grady, Julian & Hoeke, Ron K. & McInnes, Kathleen L. & Rosebrock, Uwe, 2017. "A revised assessment of Australia's national wave energy resource," Renewable Energy, Elsevier, vol. 114(PA), pages 85-107.
    9. Bernardino, Mariana & Rusu, Liliana & Guedes Soares, C., 2017. "Evaluation of the wave energy resources in the Cape Verde Islands," Renewable Energy, Elsevier, vol. 101(C), pages 316-326.
    10. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    11. Mendes, R.P.G. & Calado, M.R.A. & Mariano, S.J.P.S., 2012. "Wave energy potential in Portugal–Assessment based on probabilistic description of ocean waves parameters," Renewable Energy, Elsevier, vol. 47(C), pages 1-8.
    12. Allahdadi, M. Nabi & Gunawan, Budi & Lai, Jonathan & He, Ruoying & Neary, Vincent S., 2019. "Development and validation of a regional-scale high-resolution unstructured model for wave energy resource characterization along the US East Coast," Renewable Energy, Elsevier, vol. 136(C), pages 500-511.
    13. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    14. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    15. Rusu, Liliana, 2019. "The wave and wind power potential in the western Black Sea," Renewable Energy, Elsevier, vol. 139(C), pages 1146-1158.
    16. Monteforte, M. & Lo Re, C. & Ferreri, G.B., 2015. "Wave energy assessment in Sicily (Italy)," Renewable Energy, Elsevier, vol. 78(C), pages 276-287.
    17. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    18. Lenee-Bluhm, Pukha & Paasch, Robert & Özkan-Haller, H. Tuba, 2011. "Characterizing the wave energy resource of the US Pacific Northwest," Renewable Energy, Elsevier, vol. 36(8), pages 2106-2119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ning & García Medina, Gabriel & Yang, Zhaoqing & Cheung, Kwok Fai & Hitzl, David & Chen, Yi-Leng, 2023. "Wave climate and energy resources in the Mariana Islands from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 215(C).
    2. Li, Ning & García-Medina, Gabriel & Cheung, Kwok Fai & Yang, Zhaoqing, 2021. "Wave energy resources assessment for the multi-modal sea state of Hawaii," Renewable Energy, Elsevier, vol. 174(C), pages 1036-1055.
    3. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
    4. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    5. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    6. García Medina, Gabriel & Yang, Zhaoqing & Li, Ning & Cheung, Kwok Fai & Lutu-McMoore, Elinor, 2023. "Wave climate and energy resources in American Samoa from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 210(C), pages 604-617.
    7. Kilcher, Levi & García Medina, Gabriel & Yang, Zhaoqing, 2023. "A scalable wave resource assessment methodology: Application to U.S. waters," Renewable Energy, Elsevier, vol. 217(C).
    8. Bhattacharya, Saptarshi & Pennock, Shona & Robertson, Bryson & Hanif, Sarmad & Alam, Md Jan E. & Bhatnagar, Dhruv & Preziuso, Danielle & O’Neil, Rebecca, 2021. "Timing value of marine renewable energy resources for potential grid applications," Applied Energy, Elsevier, vol. 299(C).
    9. Ahn, Seongho & Neary, Vincent S. & Ha, Taemin, 2023. "A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates," Renewable Energy, Elsevier, vol. 207(C), pages 499-511.
    10. Delpey, Matthias & Lastiri, Ximun & Abadie, Stéphane & Roeber, Volker & Maron, Philippe & Liria, Pedro & Mader, Julien, 2021. "Characterization of the wave resource variability in the French Basque coastal area based on a high-resolution hindcast," Renewable Energy, Elsevier, vol. 178(C), pages 79-95.
    11. Rusu, Liliana, 2022. "The near future expected wave power in the coastal environment of the Iberian Peninsula," Renewable Energy, Elsevier, vol. 195(C), pages 657-669.
    12. Ahn, Seongho & Neary, Vincent S. & Allahdadi, Mohammad Nabi & He, Ruoying, 2021. "Nearshore wave energy resource characterization along the East Coast of the United States," Renewable Energy, Elsevier, vol. 172(C), pages 1212-1224.
    13. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    14. Ruth Branch & Gabriel García-Medina & Zhaoqing Yang & Taiping Wang & Fadia Ticona Rollano & Lucia Hosekova, 2021. "Modeling Sea Ice Effects for Wave Energy Resource Assessments," Energies, MDPI, vol. 14(12), pages 1-15, June.
    15. Ahn, Seongho & Neary, Vincent S., 2021. "Wave energy resource characterization employing joint distributions in frequency-direction-time domain," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    2. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    3. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    4. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    5. García Medina, Gabriel & Yang, Zhaoqing & Li, Ning & Cheung, Kwok Fai & Lutu-McMoore, Elinor, 2023. "Wave climate and energy resources in American Samoa from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 210(C), pages 604-617.
    6. Alonso, Rodrigo & Solari, Sebastián & Teixeira, Luis, 2015. "Wave energy resource assessment in Uruguay," Energy, Elsevier, vol. 93(P1), pages 683-696.
    7. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    8. Guillou, Nicolas & Chapalain, Georges, 2020. "Assessment of wave power variability and exploitation with a long-term hindcast database," Renewable Energy, Elsevier, vol. 154(C), pages 1272-1282.
    9. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    11. Yang, Zhaoqing & Neary, Vincent S. & Wang, Taiping & Gunawan, Budi & Dallman, Annie R. & Wu, Wei-Cheng, 2017. "A wave model test bed study for wave energy resource characterization," Renewable Energy, Elsevier, vol. 114(PA), pages 132-144.
    12. Wu, Wei-Cheng & Wang, Taiping & Yang, Zhaoqing & García-Medina, Gabriel, 2020. "Development and validation of a high-resolution regional wave hindcast model for U.S. West Coast wave resource characterization," Renewable Energy, Elsevier, vol. 152(C), pages 736-753.
    13. Wei-Cheng Wu & Zhaoqing Yang & Taiping Wang, 2018. "Wave Resource Characterization Using an Unstructured Grid Modeling Approach," Energies, MDPI, vol. 11(3), pages 1-15, March.
    14. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    15. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    16. Kilcher, Levi & García Medina, Gabriel & Yang, Zhaoqing, 2023. "A scalable wave resource assessment methodology: Application to U.S. waters," Renewable Energy, Elsevier, vol. 217(C).
    17. Rusu, Liliana, 2022. "The near future expected wave power in the coastal environment of the Iberian Peninsula," Renewable Energy, Elsevier, vol. 195(C), pages 657-669.
    18. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    19. Cuadra, L. & Salcedo-Sanz, S. & Nieto-Borge, J.C. & Alexandre, E. & Rodríguez, G., 2016. "Computational intelligence in wave energy: Comprehensive review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1223-1246.
    20. de Oliveira, Lucas & Santos, Ivan Felipe Silva dos & Schmidt, Nágila Lucietti & Tiago Filho, Geraldo Lúcio & Camacho, Ramiro Gustavo Ramirez & Barros, Regina Mambeli, 2021. "Economic feasibility study of ocean wave electricity generation in Brazil," Renewable Energy, Elsevier, vol. 178(C), pages 1279-1290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.