IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp499-511.html
   My bibliography  Save this article

A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates

Author

Listed:
  • Ahn, Seongho
  • Neary, Vincent S.
  • Ha, Taemin

Abstract

Wave energy resource characterization investigations have been hindered because frequency-directional wave spectra are not broadly available for many coastal regions due to the insufficient spatial coverage of buoy observation networks and spectral wave model hindcast outputs. We address this problem by developing and validating a practical method for approximating temporally-averaged frequency-directional wave spectra averaged over periods of months or years from bulk wave parameters, which are available at a much greater coverage and resolution than frequency-directional wave spectra. While the temporally averaged frequency-directional wave spectrum over these periods cannot be used for analyzing a single sea state, it aggregates multiple sea states, identifies dominant wave energy systems representing wave climate, and resolves their spectral characteristics. Therefore, modelling temporally averaged frequency-directional wave spectra is of great value for planning and designing wave energy projects, e.g., resource characterization, site assessment, and conceptual design of wave energy converters. Temporally-averaged frequency-directional wave spectra and related important wave energy parameters approximated using this method are found to be more accurate than commonly used parametric wave spectrum models. This method can be applied to a wide range of wave climates given its universality and high accuracy. Also, the availability of bulk wave parameters from multi-decade high-resolution wave model hindcasts is increasing.

Suggested Citation

  • Ahn, Seongho & Neary, Vincent S. & Ha, Taemin, 2023. "A practical method for modeling temporally-averaged ocean wave frequency-directional spectra for characterizing wave energy climates," Renewable Energy, Elsevier, vol. 207(C), pages 499-511.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:499-511
    DOI: 10.1016/j.renene.2023.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Zhaoqing & García-Medina, Gabriel & Wu, Wei-Cheng & Wang, Taiping, 2020. "Characteristics and variability of the nearshore wave resource on the U.S. West Coast," Energy, Elsevier, vol. 203(C).
    2. Borja G. Reguero & Iñigo J. Losada & Fernando J. Méndez, 2019. "A recent increase in global wave power as a consequence of oceanic warming," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    4. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    5. Ahn, Seongho & Neary, Vincent S. & Allahdadi, Mohammad Nabi & He, Ruoying, 2021. "Nearshore wave energy resource characterization along the East Coast of the United States," Renewable Energy, Elsevier, vol. 172(C), pages 1212-1224.
    6. Stopa, Justin E. & Filipot, Jean-François & Li, Ning & Cheung, Kwok Fai & Chen, Yi-Leng & Vega, Luis, 2013. "Wave energy resources along the Hawaiian Island chain," Renewable Energy, Elsevier, vol. 55(C), pages 305-321.
    7. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    8. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    9. Allahdadi, M. Nabi & Gunawan, Budi & Lai, Jonathan & He, Ruoying & Neary, Vincent S., 2019. "Development and validation of a regional-scale high-resolution unstructured model for wave energy resource characterization along the US East Coast," Renewable Energy, Elsevier, vol. 136(C), pages 500-511.
    10. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2020. "Wave energy resource characterization and assessment for coastal waters of the United States," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    2. Ahn, Seongho & Neary, Vincent S. & Haas, Kevin A., 2022. "Global wave energy resource classification system for regional energy planning and project development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Seongho Ahn & Kevin A. Haas & Vincent S. Neary, 2020. "Dominant Wave Energy Systems and Conditional Wave Resource Characterization for Coastal Waters of the United States," Energies, MDPI, vol. 13(12), pages 1-26, June.
    4. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    5. Ahn, Seongho & Neary, Vincent S. & Allahdadi, Mohammad Nabi & He, Ruoying, 2021. "Nearshore wave energy resource characterization along the East Coast of the United States," Renewable Energy, Elsevier, vol. 172(C), pages 1212-1224.
    6. Ahn, Seongho & Neary, Vincent S., 2021. "Wave energy resource characterization employing joint distributions in frequency-direction-time domain," Applied Energy, Elsevier, vol. 285(C).
    7. Kilcher, Levi & García Medina, Gabriel & Yang, Zhaoqing, 2023. "A scalable wave resource assessment methodology: Application to U.S. waters," Renewable Energy, Elsevier, vol. 217(C).
    8. García Medina, Gabriel & Yang, Zhaoqing & Li, Ning & Cheung, Kwok Fai & Lutu-McMoore, Elinor, 2023. "Wave climate and energy resources in American Samoa from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 210(C), pages 604-617.
    9. Liliana Rusu & Eugen Rusu, 2021. "Evaluation of the Worldwide Wave Energy Distribution Based on ERA5 Data and Altimeter Measurements," Energies, MDPI, vol. 14(2), pages 1-16, January.
    10. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    11. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2020. "Wave energy resource characterization and assessment for coastal waters of the United States," Applied Energy, Elsevier, vol. 267(C).
    12. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    13. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    14. Li, Ning & García Medina, Gabriel & Yang, Zhaoqing & Cheung, Kwok Fai & Hitzl, David & Chen, Yi-Leng, 2023. "Wave climate and energy resources in the Mariana Islands from a 42-year high-resolution hindcast," Renewable Energy, Elsevier, vol. 215(C).
    15. Penalba, Markel & Aizpurua, Jose Ignacio & Martinez-Perurena, Ander & Iglesias, Gregorio, 2022. "A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Li, Ning & García-Medina, Gabriel & Cheung, Kwok Fai & Yang, Zhaoqing, 2021. "Wave energy resources assessment for the multi-modal sea state of Hawaii," Renewable Energy, Elsevier, vol. 174(C), pages 1036-1055.
    17. Ahn, Seongho & Haas, Kevin A. & Neary, Vincent S., 2019. "Wave energy resource classification system for US coastal waters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 54-68.
    18. Kamranzad, Bahareh & Takara, Kaoru, 2020. "A climate-dependent sustainability index for wave energy resources in Northeast Asia," Energy, Elsevier, vol. 209(C).
    19. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    20. Américo S. Ribeiro & Maite deCastro & Liliana Rusu & Mariana Bernardino & João M. Dias & Moncho Gomez-Gesteira, 2020. "Evaluating the Future Efficiency of Wave Energy Converters along the NW Coast of the Iberian Peninsula," Energies, MDPI, vol. 13(14), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:499-511. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.