IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v198y2020ics036054422030311x.html
   My bibliography  Save this article

Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation

Author

Listed:
  • Ma, Ziming
  • Zhong, Haiwang
  • Xia, Qing
  • Kang, Chongqing
  • Jin, Liming

Abstract

With the high penetration of renewable energy, such as hydro, wind and solar, curtailment is a serious issue in some regions, such as China. The key issue is lacking of flexibility, primarily due to the limited dispatchable range of thermal generators. There is an urgent need to expand the dispatchable range to promote the renewable energy accommodation. To this end, a new constraint relaxation-based day-ahead market mechanism is proposed. The trade-off between thermal units and renewable energy is achieved. Deep ramp offers and curtailment relief bids are proposed to express market participants’ willingness for deep ramp and relieving curtailment. Thermal units submit their deep ramp offers to get compensation while renewable energy submits its curtailment relief bid to cut the energy price. Renewable energy is curtailed in the order of its curtailment relief bid. The model of constraint relaxation-based day-ahead market clearing procedure and model of equal curtailment without constraint relaxation are formulated, respectively. An accelerating technique combining Relaxation-based Neighborhood Search (RBNS) and Improved Relaxation Inducement (IRI) is introduced. A case study based on IEEE 118-bus system validates the effectiveness of the proposed mechanism and models and shows that the introduced accelerating technique can significantly reduce the computation time.

Suggested Citation

  • Ma, Ziming & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Jin, Liming, 2020. "Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation," Energy, Elsevier, vol. 198(C).
  • Handle: RePEc:eee:energy:v:198:y:2020:i:c:s036054422030311x
    DOI: 10.1016/j.energy.2020.117204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422030311X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
    2. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    3. Zou, Peng & Chen, Qixin & Yu, Yang & Xia, Qing & Kang, Chongqing, 2017. "Electricity markets evolution with the changing generation mix: An empirical analysis based on China 2050 High Renewable Energy Penetration Roadmap," Applied Energy, Elsevier, vol. 185(P1), pages 56-67.
    4. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    5. Gang Wang & Daihai You & Suhua Lou & Zhe Zhang & Li Dai, 2017. "Economic Valuation of Low-Load Operation with Auxiliary Firing of Coal-Fired Units," Energies, MDPI, vol. 10(9), pages 1-20, September.
    6. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    7. Bird, Lori & Lew, Debra & Milligan, Michael & Carlini, E. Maria & Estanqueiro, Ana & Flynn, Damian & Gomez-Lazaro, Emilio & Holttinen, Hannele & Menemenlis, Nickie & Orths, Antje & Eriksen, Peter Børr, 2016. "Wind and solar energy curtailment: A review of international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 577-586.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Shitian & Liu, Pan & Li, Xiao & Cheng, Qian & Liu, Zheyuan, 2023. "Deriving long-term operating rules of the hydro-wind-PV hybrid energy system considering electricity price," Renewable Energy, Elsevier, vol. 219(P1).
    2. Hu, Bo & Zhou, P., 2022. "Can the renewable power consumption guarantee mechanism help activate China's power trading market?," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Wu, Yunyang & Reedman, Luke J. & Barrett, Mark A. & Spataru, Catalina, 2018. "Comparison of CST with different hours of storage in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 122(C), pages 487-496.
    3. Zhou, Dequn & Wu, Changsong & Wang, Qunwei & Zha, Donglan, 2019. "Response of scale and leverage of thermal power enterprises to renewable power enterprises in China," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    5. Wu, Geng & Wang, Haojing & Wu, Qingguo, 2020. "Wind power development in the Belt and Road area of Xinjiang, China: Problems and solutions," Utilities Policy, Elsevier, vol. 64(C).
    6. Xue, Yuan & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2019. "Peak shaving performance of coal-fired power generating unit integrated with multi-effect distillation seawater desalination," Applied Energy, Elsevier, vol. 250(C), pages 175-184.
    7. Guerra, K. & Gutiérrez-Alvarez, R. & Guerra, Omar J. & Haro, P., 2023. "Opportunities for low-carbon generation and storage technologies to decarbonise the future power system," Applied Energy, Elsevier, vol. 336(C).
    8. Xu, Jie & Lv, Tao & Hou, Xiaoran & Deng, Xu & Liu, Feng, 2021. "Provincial allocation of renewable portfolio standard in China based on efficiency and fairness principles," Renewable Energy, Elsevier, vol. 179(C), pages 1233-1245.
    9. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    10. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    11. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    12. Villamor, Lila Vázquez & Avagyan, Vitali & Chalmers, Hannah, 2020. "Opportunities for reducing curtailment of wind energy in the future electricity systems: Insights from modelling analysis of Great Britain," Energy, Elsevier, vol. 195(C).
    13. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    14. Solomon, A.A. & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Curtailment-storage-penetration nexus in the energy transition," Applied Energy, Elsevier, vol. 235(C), pages 1351-1368.
    15. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.
    16. Wang, Xuebin & Chang, Jianxia & Meng, Xuejiao & Wang, Yimin, 2018. "Short-term hydro-thermal-wind-photovoltaic complementary operation of interconnected power systems," Applied Energy, Elsevier, vol. 229(C), pages 945-962.
    17. Mubbashir Ali & Jussi Ekström & Matti Lehtonen, 2018. "Sizing Hydrogen Energy Storage in Consideration of Demand Response in Highly Renewable Generation Power Systems," Energies, MDPI, vol. 11(5), pages 1-11, May.
    18. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Yang, Yuting, 2022. "Electricity interconnection with intermittent renewables," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    20. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:198:y:2020:i:c:s036054422030311x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.