IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224016931.html
   My bibliography  Save this article

Composite combustion behaviors of tubular flame and central jet flame in a reduced-diameter vortex combustor

Author

Listed:
  • Zhang, Jing-hao
  • Bi, Ming-shu
  • Du, Dan
  • Hao, Qiang-qiang
  • Yu, Di
  • Wang, Yuan
  • Ren, Jing-jie

Abstract

The characteristics of the tubular flame and the flow field mixing mechanism in a reduced-diameter vortex combustor are investigated by varying the fuel flow rate and equivalence ratio through experiments and numerical simulations. Single-layer tubular flame and double-layer composite tubular flame are found in the combustor under the coupling effect of the cyclone and the central jet. The composite tubular flame will be formed when the air in the combustor is more abundant (Ф>1.00), and the center flame frequency is linearly and positively correlated with the Reynolds number of the central jet air. When the Reynolds number exceeds 2000, the double-layer composite flame tends to stabilize, with the center flame frequency higher than 9 Hz. The turbulence of the central jet air promotes the mixing of reactants by enhancing the recirculation near the nozzle, guaranteeing the central flame's stable combustion. Through analysis of the burn rate of methane at the outlet and the emission species of CO and CO2, it is evident that the double-layer flame achieves the methane burn rate exceeding 95 %, while also exhibiting lower CO emissions compared to the single-layer flame.

Suggested Citation

  • Zhang, Jing-hao & Bi, Ming-shu & Du, Dan & Hao, Qiang-qiang & Yu, Di & Wang, Yuan & Ren, Jing-jie, 2024. "Composite combustion behaviors of tubular flame and central jet flame in a reduced-diameter vortex combustor," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016931
    DOI: 10.1016/j.energy.2024.131920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224016931
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ren, Shoujun & Yang, Haolin & Jiang, Liqiao & Zhao, Daiqing & Wang, Xiaohan, 2020. "Stabilization characteristics and mechanisms in a novel tubular flame burner with localized stratified property," Energy, Elsevier, vol. 197(C).
    2. Lv, Guangpu & Liu, Xiao & Zhang, Zhihao & Li, Shengnan & Liu, Enhui & Zheng, Hongtao, 2023. "The effects of premixed pilot-stage on combustion instabilities in stratified swirling flames: A large eddy simulation study," Energy, Elsevier, vol. 274(C).
    3. Ren, Shoujun & Jones, William P. & Wang, Xiaohan, 2023. "Multi-fuel combustion performance analysis and operating characteristics of a vortex-tube combustor," Energy, Elsevier, vol. 264(C).
    4. Hwang, Cheol-Hong & Lee, Seungro & Kim, Jong-Hyun & Lee, Chang-Eon, 2009. "An experimental study on flame stability and pollutant emission in a cyclone jet hybrid combustor," Applied Energy, Elsevier, vol. 86(7-8), pages 1154-1161, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González-Cencerrado, A. & Peña, B. & Gil, A., 2012. "Coal flame characterization by means of digital image processing in a semi-industrial scale PF swirl burner," Applied Energy, Elsevier, vol. 94(C), pages 375-384.
    2. Chen, Junghui & Chan, Lester Lik Teck & Cheng, Yi-Cheng, 2013. "Gaussian process regression based optimal design of combustion systems using flame images," Applied Energy, Elsevier, vol. 111(C), pages 153-160.
    3. Ren, Shoujun & Jones, William P. & Wang, Xiaohan, 2023. "Multi-fuel combustion performance analysis and operating characteristics of a vortex-tube combustor," Energy, Elsevier, vol. 264(C).
    4. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    5. Ren, Shoujun & Yang, Haolin & Wang, Xiaohan, 2021. "The oxygen-deficient combustion and its effect on the NOx emission in a localized stratified vortex-tube combustor," Energy, Elsevier, vol. 235(C).
    6. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    7. Ren, Shoujun & Yang, Haolin & Jiang, Liqiao & Zhao, Daiqing & Wang, Xiaohan, 2020. "One axial fuel injected vortex-tube combustor with high capacity of combustion stabilization for NOx reduction," Energy, Elsevier, vol. 211(C).
    8. Chen, Junghui & Hsu, Tong-Yang & Chen, Chih-Chien & Cheng, Yi-Cheng, 2010. "Monitoring combustion systems using HMM probabilistic reasoning in dynamic flame images," Applied Energy, Elsevier, vol. 87(7), pages 2169-2179, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224016931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.