IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220302322.html
   My bibliography  Save this article

Countrywide optimization of natural gas supply chain: From wells to consumers

Author

Listed:
  • Dara, Satyadileep
  • Abdulqader, Haytham
  • Al Wahedi, Yasser
  • Berrouk, Abdallah S.

Abstract

High-profit-margin gas plants are often challenged by low crude price and fluctuations in processed natural gas quality and quantities demanded by markets. A more challenging factor is the rapid variation in the demand of the products across gas supply chain. These challenges require high operational flexibility across the supply chain to adapt its product portfolio to the market-changes. To this end, optimization of the entire supply chain is highly essential to address these pressing challenges. This paper details an optimization analysis of a countrywide gas supply chain typical to the Middle East region. A unified optimization model that encompasses all the supply chain components is formulated. The model, in its most general form, comprises of 446 decision variables and 190 constraints, which is solved using an evolutionary algorithm. The key application of the proposed model is that it can be used in assessing the optimum allocation of the gas across the various layers of supply chain to maximize countrywide total profit. The model shows that an increase of 3% in profit can be achieved. The model is also used to predict future gas allocations under different scenarios based on fifteen-year profile of gas profiles, costs, product yields and contractual terms.

Suggested Citation

  • Dara, Satyadileep & Abdulqader, Haytham & Al Wahedi, Yasser & Berrouk, Abdallah S., 2020. "Countrywide optimization of natural gas supply chain: From wells to consumers," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302322
    DOI: 10.1016/j.energy.2020.117125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220302322
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yoon, Sekwang & Binns, Michael & Park, Sangmin & Kim, Jin-Kuk, 2017. "Development of energy-efficient processes for natural gas liquids recovery," Energy, Elsevier, vol. 128(C), pages 768-775.
    2. Zhang, B.J. & Liu, K. & Luo, X.L. & Chen, Q.L. & Li, W.K., 2015. "A multi-period mathematical model for simultaneous optimization of materials and energy on the refining site scale," Applied Energy, Elsevier, vol. 143(C), pages 238-250.
    3. Guo, Hao & Tang, Qixiong & Gong, Maoqiong & Cheng, Kuiwei, 2018. "Optimization of a novel liquefaction process based on Joule–Thomson cycle utilizing high-pressure natural gas exergy by genetic algorithm," Energy, Elsevier, vol. 151(C), pages 696-706.
    4. Gutierrez, Juan Pablo & Tarifa, Enrique E. & Erdmann, Eleonora, 2018. "Steady-state energy optimization and transition assessment in a process of CO2 absorption from natural gas," Energy, Elsevier, vol. 159(C), pages 1016-1023.
    5. Mikolajková, Markéta & Haikarainen, Carl & Saxén, Henrik & Pettersson, Frank, 2017. "Optimization of a natural gas distribution network with potential future extensions," Energy, Elsevier, vol. 125(C), pages 848-859.
    6. Aslambakhsh, Amir Hamzeh & Moosavian, Mohammad Ali & Amidpour, Majid & Hosseini, Mohammad & AmirAfshar, Saeedeh, 2018. "Global cost optimization of a mini-scale liquefied natural gas plant," Energy, Elsevier, vol. 148(C), pages 1191-1200.
    7. Cho, Jaeyoung & Lim, Gino J. & Kim, Seon Jin & Biobaku, Taofeek, 2018. "Liquefied natural gas inventory routing problem under uncertain weather conditions," International Journal of Production Economics, Elsevier, vol. 204(C), pages 18-29.
    8. Wu, Jitan & Ju, Yonglin, 2019. "Design and optimization of natural gas liquefaction process using brazed plate heat exchangers based on the modified single mixed refrigerant process," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Haicheng & Lou, Gaoxiang & Fan, Tijun & Chan, Hing Kai & Chung, Sai Ho, 2021. "Conventional automotive supply chains under China's dual-credit policy: fuel economy, production and coordination," Energy Policy, Elsevier, vol. 151(C).
    2. Hong, Bingyuan & Du, Zhaonan & Qiao, Dan & Liu, Daiwei & Li, Yu & Sun, Xiaoqing & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Sustainable supply chain of distributed multi-product gas fields based on skid-mounted equipment to dynamically respond to upstream and market fluctuations," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    2. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    3. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    4. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    5. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    6. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    7. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    8. Mofid, Hossein & Jazayeri-Rad, Hooshang & Shahbazian, Mehdi & Fetanat, Abdolvahhab, 2019. "Enhancing the performance of a parallel nitrogen expansion liquefaction process (NELP) using the multi-objective particle swarm optimization (MOPSO) algorithm," Energy, Elsevier, vol. 172(C), pages 286-303.
    9. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    10. Luo, Xianglong & Huang, Xiaojian & El-Halwagi, Mahmoud M. & Ponce-Ortega, José María & Chen, Ying, 2016. "Simultaneous synthesis of utility system and heat exchanger network incorporating steam condensate and boiler feedwater," Energy, Elsevier, vol. 113(C), pages 875-893.
    11. Samuel Mathias do Amaral Junior & Janine Carvalho Padilha & Leonardo Arrieche, 2024. "Brazil’s New Gas Law: Analysis, Implications, and Remuneration of Gas Processing Plants with Non-Discriminatory Access to Customers," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 559-569, January.
    12. Fan, Di & Gong, Jing & Zhang, Shengnan & Shi, Guoyun & Kang, Qi & Xiao, Yaqi & Wu, Changchun, 2021. "A transient composition tracking method for natural gas pipe networks," Energy, Elsevier, vol. 215(PA).
    13. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    14. Wu, Shiguang & Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Zhai, Yujia & Xue, Renjun & Tan, Han & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic study on throttling process of Joule-Thomson cooler to improve helium liquefaction performance between 2 K and 4 K," Energy, Elsevier, vol. 277(C).
    15. Tian, Xin & Cao, Shasha & Song, Yan, 2021. "The impact of weather on consumer behavior and retail performance: Evidence from a convenience store chain in China," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    16. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    17. Zhu, Qiannan & Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2016. "Mathematical modeling, validation, and operation optimization of an industrial complex steam turbine network-methodology and application," Energy, Elsevier, vol. 97(C), pages 191-213.
    18. Shivam Gupta & Sachin Modgil & Ajay Kumar & Uthayasankar Sivarajah & Zahir Irani, 2022. "Artificial intelligence and cloud-based Collaborative Platforms for Managing Disaster, extreme weather and emergency operations," Post-Print hal-04325638, HAL.
    19. Qyyum, Muhammad Abdul & Naquash, Ahmad & Haider, Junaid & Al-Sobhi, Saad A. & Lee, Moonyong, 2022. "State-of-the-art assessment of natural gas liquids recovery processes: Techno-economic evaluation, policy implications, open issues, and the way forward," Energy, Elsevier, vol. 238(PA).
    20. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220302322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.