IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220301742.html
   My bibliography  Save this article

Preparation and thermal characterization of LiNO3–NaNO3–KCl ternary mixture and LiNO3–NaNO3–KCl/EG composites

Author

Listed:
  • Li, Y.
  • Yue, G.
  • Yu, Y.M.
  • Zhu, Q.Z.

Abstract

Phase change material (PCM) has important applications in the field of thermal energy storage due to its characteristic that the temperature is basically unchanged during the endothermic and exothermic processes. At the same time, it helps to achieve heat supply/demand balance and reasonable energy distribution. Nitrates are widely used as mid-temperature phase change material, but they have relatively low phase change latent heat than chlorine salt. In order to get a kind of material with high phase change latent heat, 50 wt% LiNO3–45 wt% NaNO3–5 wt% KCl (LNK) ternary mixed molten salt is prepared with static mixing melting method. Meanwhile, LNK/expanded graphite (EG) composite phase change materials are prepared with ultrasound smashing method. The experimental results show that the addition of KCl changes the performance. The melting temperature of LNK reduces 20.6 °C and its phase change latent heat increases 19.9 J/g, compared with 43 wt% NaNO3–57 wt% LiNO3 binary nitrate mixture. The thermal properties and thermal stability of the materials are tested and analyzed. The experimental results show that both the ternary phase change material and the composite phase change materials have high phase change latent heat and chemical stability. EG has greatly increased the heat conductivity of the composite phase change materials. The thermal conductivity of 85 wt% LNK/15 wt% EG composite phase change material increases by 778% compared to LNK at 20 MPa forming pressure.

Suggested Citation

  • Li, Y. & Yue, G. & Yu, Y.M. & Zhu, Q.Z., 2020. "Preparation and thermal characterization of LiNO3–NaNO3–KCl ternary mixture and LiNO3–NaNO3–KCl/EG composites," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301742
    DOI: 10.1016/j.energy.2020.117067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301742
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    2. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Heqing & Wang, Weilong & Ding, Jing & Wei, Xiaolan, 2021. "Thermal performance and economic evaluation of NaCl–CaCl2 eutectic salt for high-temperature thermal energy storage," Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    2. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    3. Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
    4. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    5. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    6. Raud, Ralf & Cholette, Michael E. & Riahi, Soheila & Bruno, Frank & Saman, Wasim & Will, Geoffrey & Steinberg, Theodore A., 2017. "Design optimization method for tube and fin latent heat thermal energy storage systems," Energy, Elsevier, vol. 134(C), pages 585-594.
    7. Bell, S. & Steinberg, T. & Will, G., 2019. "Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    9. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    10. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    11. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    13. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    14. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    15. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    16. Yang, Li & He, Bao-jie & Ye, Miao, 2014. "The application of solar technologies in building energy efficiency: BISE design in solar-powered residential buildings," Technology in Society, Elsevier, vol. 38(C), pages 111-118.
    17. Saloux, E. & Candanedo, J.A., 2019. "Modelling stratified thermal energy storage tanks using an advanced flowrate distribution of the received flow," Applied Energy, Elsevier, vol. 241(C), pages 34-45.
    18. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    19. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    20. Wu, Jinshun & Zhang, Xingxing & Shen, Jingchun & Wu, Yupeng & Connelly, Karen & Yang, Tong & Tang, Llewellyn & Xiao, Manxuan & Wei, Yixuan & Jiang, Ke & Chen, Chao & Xu, Peng & Wang, Hong, 2017. "A review of thermal absorbers and their integration methods for the combined solar photovoltaic/thermal (PV/T) modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 839-854.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301742. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.