IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v159y2022ics1364032122000892.html
   My bibliography  Save this article

A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits

Author

Listed:
  • Alabid, Jamal
  • Bennadji, Amar
  • Seddiki, Mohammed

Abstract

There are inherited challenges and barriers the UK government faces in meeting the 80% carbon reduction target by 2050 compared to 1990 baseline. Technically research shows great opportunity to achieve this target through strategic mass-scale plan to include new and retrofit building schemes. This study aims at reviewing the current retrofit schemes and policies UK adopted since committed to reduce carbon emissions, with an emphasis on existing challenges and potential benefits brought to the construction industry. This will help identifying the gap performance between legislations, standards, and actual/anticipated deliverables. The review adopted secondary research method to allocate scientific research data published in journals and reports on building retrofits. Literature indicated insufficient guidance and information on existing UK housing stock to enable the decision-makers to implement realistic and achievable plans for reducing carbon emissions. The study signifies the understanding and dealing with individual cases as generic retrofitting packages will likely fail to address the complexity of the UK context. Great attention should be paid to some other factors such as social sustainability with great emphasis on using low embodied carbon and energy products. The review will be useful for homeowners and other stakeholders involved in decision-making or people interested in building retrofits.

Suggested Citation

  • Alabid, Jamal & Bennadji, Amar & Seddiki, Mohammed, 2022. "A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  • Handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000892
    DOI: 10.1016/j.rser.2022.112161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000892
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neuhoff, Karsten & Amecke, Hermann & Novikova, Aleksandra & Stelmakh, Kateryna, 2011. "Thermal Efficiency Retrofit of Residential Buildings: The German Experience," EconStor Research Reports 65868, ZBW - Leibniz Information Centre for Economics.
    2. Piccardo, C. & Dodoo, A. & Gustavsson, L. & Tettey, U.Y.A., 2020. "Retrofitting with different building materials: Life-cycle primary energy implications," Energy, Elsevier, vol. 192(C).
    3. Vilches, Alberto & Barrios Padura, Ángela & Molina Huelva, Marta, 2017. "Retrofitting of homes for people in fuel poverty: Approach based on household thermal comfort," Energy Policy, Elsevier, vol. 100(C), pages 283-291.
    4. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    5. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    6. Ravetz, Joe, 2008. "State of the stock--What do we know about existing buildings and their future prospects?," Energy Policy, Elsevier, vol. 36(12), pages 4462-4470, December.
    7. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    2. Shapira, Stav & Teschner, Naama, 2023. "No heat, no eat: (Dis)entangling insecurities and their implications for health and well-being," Social Science & Medicine, Elsevier, vol. 336(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    2. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.
    3. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    4. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    5. Weiss, Julika & Dunkelberg, Elisa & Vogelpohl, Thomas, 2012. "Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany," Energy Policy, Elsevier, vol. 44(C), pages 406-415.
    6. Kuckshinrichs, Wilhelm & Kronenberg, Tobias & Hansen, Patrick, 2010. "The social return on investment in the energy efficiency of buildings in Germany," Energy Policy, Elsevier, vol. 38(8), pages 4317-4329, August.
    7. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    8. Bardsley, Nicholas & Büchs, Milena & James, Patrick & Papafragkou, Anastasios & Rushby, Thomas & Saunders, Clare & Smith, Graham & Wallbridge, Rebecca & Woodman, Nicholas, 2019. "Domestic thermal upgrades, community action and energy saving: A three-year experimental study of prosperous households," Energy Policy, Elsevier, vol. 127(C), pages 475-485.
    9. O’Keeffe, Juliette M. & Gilmour, Daniel & Simpson, Edward, 2016. "A network approach to overcoming barriers to market engagement for SMEs in energy efficiency initiatives such as the Green Deal," Energy Policy, Elsevier, vol. 97(C), pages 582-590.
    10. Filippidou, Faidra & Nieboer, Nico & Visscher, Henk, 2017. "Are we moving fast enough? The energy renovation rate of the Dutch non-profit housing using the national energy labelling database," Energy Policy, Elsevier, vol. 109(C), pages 488-498.
    11. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    12. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    13. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    14. Foulds, Chris & Powell, Jane, 2014. "Using the Homes Energy Efficiency Database as a research resource for residential insulation improvements," Energy Policy, Elsevier, vol. 69(C), pages 57-72.
    15. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    16. Azevedo, Isabel & Delarue, Erik & Meeus, Leonardo, 2013. "Mobilizing cities towards a low-carbon future: Tambourines, carrots and sticks," Energy Policy, Elsevier, vol. 61(C), pages 894-900.
    17. Bobrova, Yekatherina & Papachristos, George & Chiu, Lai Fong, 2021. "Homeowner low carbon retrofits: Implications for future UK policy," Energy Policy, Elsevier, vol. 155(C).
    18. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    19. Qing He & Haiyang Zhao & Lin Shen & Liuqun Dong & Ye Cheng & Ke Xu, 2019. "Factors Influencing Residents’ Intention toward Green Retrofitting of Existing Residential Buildings," Sustainability, MDPI, vol. 11(15), pages 1-23, August.
    20. Anna Życzyńska & Zbigniew Suchorab & Jan Kočí & Robert Černý, 2020. "Energy Effects of Retrofitting the Educational Facilities Located in South-Eastern Poland," Energies, MDPI, vol. 13(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:159:y:2022:i:c:s1364032122000892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.