IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222026536.html
   My bibliography  Save this article

Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment

Author

Listed:
  • Guo, Yide
  • Huang, Linqi
  • Li, Xibing

Abstract

Shale gas is becoming a top priority for future global energy consumption and climate change mitigation, and deep and ultradeep shale gas extraction cannot overlook the influence of the geothermal environment. This paper experimentally investigated the tensile behavior and acoustic emission (AE) characteristics of anisotropic shale under geothermal environment of 25–200 °C. The results indicate that the tensile strength and absorbed energy of all specimens decreased with increasing temperature, and minimum values occurred in specimens with a layer inclination of 90° at each temperature. The evolution of tensile strength and absorbed energy versus the layer inclination did not vary with increasing temperature, exhibiting an inverted-V shape. Anisotropic failure mode of specimens with layer inclinations of 30°, 45° and 60° was influenced by the increasing temperature, but central tensile fracturing in specimens with layer inclinations of 0° and 90° was temperature-independent. With increasing temperature, the cumulative AE hits of specimens showed a highly obvious step-up trend, and anisotropic crack initiation stress levels obtained via the AE definition significantly varied. Finally, microstructure response, fracture length and fracture location and proportion of fracture types were discussed, and potential applications and challenges of geothermal environment in hydraulic fracturing of deep shale reservoirs were proposed.

Suggested Citation

  • Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental investigation of the tensile behavior and acoustic emission characteristics of anisotropic shale under geothermal environment," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222026536
    DOI: 10.1016/j.energy.2022.125767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222026536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyu, Qiao & Long, Xinping & Ranjith, P.G. & Tan, Jingqiang & Kang, Yong & Wang, Zhanghu, 2018. "Experimental investigation on the mechanical properties of a low-clay shale with different adsorption times in sub-/super-critical CO2," Energy, Elsevier, vol. 147(C), pages 1288-1298.
    2. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    3. Brian Owens, 2013. "Mining: Extreme prospects," Nature, Nature, vol. 495(7440), pages 4-6, March.
    4. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    5. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Sualp, M. Nedim, 2016. "How did the US economy react to shale gas production revolution? An advanced time series approach," Energy, Elsevier, vol. 116(P1), pages 963-977.
    6. Valery Salygin & Igbal Guliev & Natalia Chernysheva & Elizaveta Sokolova & Natalya Toropova & Larisa Egorova, 2019. "Global Shale Revolution: Successes, Challenges, and Prospects," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    7. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    8. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    9. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    10. Tianshou Ma & Nian Peng & Zhu Zhu & Qianbing Zhang & Chunhe Yang & Jian Zhao, 2018. "Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights," Energies, MDPI, vol. 11(2), pages 1-25, January.
    11. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan, Xuesong & Zhang, Weiwei & Deng, Ke & Luo, Maokang, 2024. "Shale gas completion fracturing technology based on FAE controlled burning explosion," Energy, Elsevier, vol. 296(C).
    2. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental and numerical investigation on the fracture behavior of deep anisotropic shale reservoir under in-situ temperature," Energy, Elsevier, vol. 282(C).
    3. Guo, Yide & Dyskin, Arcady & Pasternak, Elena, 2024. "Thermal spallation of dry rocks induced by flame parallel or normal to layering: Effect of anisotropy," Energy, Elsevier, vol. 288(C).
    4. Guo, Yide & Li, Xibing & Huang, Linqi, 2023. "Experimental investigation on the sudden cooling effect of oil-based drilling fluid on the dynamic compressive behavior of deep shale reservoirs," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    2. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    3. Guo, Yide & Huang, Linqi & Li, Xibing, 2023. "Experimental and numerical investigation on the fracture behavior of deep anisotropic shale reservoir under in-situ temperature," Energy, Elsevier, vol. 282(C).
    4. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    5. Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
    6. Choi, Chae-Soon & Kim, Jineon & Song, Jae-Joon, 2021. "Analysis of shale property changes after geochemical interaction under CO2 sequestration conditions," Energy, Elsevier, vol. 214(C).
    7. Stian Rørheim & Mohammad Hossain Bhuiyan & Andreas Bauer & Pierre Rolf Cerasi, 2021. "On the Effect of CO 2 on Seismic and Ultrasonic Properties: A Novel Shale Experiment," Energies, MDPI, vol. 14(16), pages 1-20, August.
    8. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    9. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    10. Dabbaghi, Ehsan & Ng, Kam, 2024. "Effects of CO2 on the mineralogy, mechanical, and transport properties of rocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
    12. Ozotta, Ogochukwu & Kolawole, Oladoyin & Lamine Malki, Mohamed & Ore, Tobi & Gentzis, Thomas & Fowler, Hallie & Liu, Kouqi & Ostadhassan, Mehdi, 2022. "Nano- to macro-scale structural, mineralogical, and mechanical alterations in a shale reservoir induced by exposure to supercritical CO2," Applied Energy, Elsevier, vol. 326(C).
    13. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    14. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    15. Chunsheng Yu & Xiao Zhao & Qi Jiang & Xiaosha Lin & Hengyuan Gong & Xuanqing Chen, 2022. "Shale Microstructure Characteristics under the Action of Supercritical Carbon Dioxide (Sc-CO 2 )," Energies, MDPI, vol. 15(22), pages 1-9, November.
    16. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
    17. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    18. Cheng, P. & Zhang, C.P. & Ma, Z.Y. & Zhou, J.P. & Zhang, D.C. & Liu, X.F. & Chen, H. & Ranjith, P.G., 2022. "Experimental study of micromechanical properties alterations of shale matrix treated by ScCO2-Water saturation using nanoindentation tests," Energy, Elsevier, vol. 242(C).
    19. Cheng, Qi & Tang, Jiren & Jia, Yunzhong & Lu, Yiyu & Zhang, Chi & Liu, Yanlin & Zhao, Guilin & Liu, Yalu, 2024. "Shale softening induced by CO2 injection in the absence and presence of water: An experimental investigation based on nanoindentation," Energy, Elsevier, vol. 288(C).
    20. Yugang Cheng & Mengru Zeng & Zhaohui Lu & Xidong Du & Hong Yin & Liu Yang, 2020. "Effects of Supercritical CO 2 Treatment Temperatures on Mineral Composition, Pore Structure and Functional Groups of Shale: Implications for CO 2 Sequestration," Sustainability, MDPI, vol. 12(9), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222026536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.