IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319474.html
   My bibliography  Save this article

A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes

Author

Listed:
  • Yu, Shiwei
  • Li, Zhenxi
  • Wei, Yi-Ming
  • Liu, Lancui

Abstract

By considering carbon trading and resource tax, this study established a bidimensional binominal lattice of a compound real option pricing model to help investors make decisions for geothermal heating projects. Two types of real options, to defer and to abandon, are simultaneously considered. Further, a case study on the decision making for a geothermal heating project in the Xiongan New Area in China was conducted to verify the feasibility of the proposed model. The results show that 1) the investors should delay the “invest-decision” at least one year under the real option rule but that investment value would at least 0.9 times more than that by the net present value method; 2) different subsidies methods could influence the investment time and project value, and one-time subsidies may lead to larger project value but delay the investment time; 3) The project value could be increased by conducting carbon trading but could be reduced by resource tax implementation; and 4) the value of option to defer is negatively sensitive to the initial fossil fuel price, but the value of the option to abandon is positively sensitive to the volatility of carbon price.

Suggested Citation

  • Yu, Shiwei & Li, Zhenxi & Wei, Yi-Ming & Liu, Lancui, 2019. "A real option model for geothermal heating investment decision making: Considering carbon trading and resource taxes," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319474
    DOI: 10.1016/j.energy.2019.116252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319474
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ritzenhofen, Ingmar & Spinler, Stefan, 2016. "Optimal design of feed-in-tariffs to stimulate renewable energy investments under regulatory uncertainty — A real options analysis," Energy Economics, Elsevier, vol. 53(C), pages 76-89.
    2. Eduardo Schwartz & James E. Smith, 2000. "Short-Term Variations and Long-Term Dynamics in Commodity Prices," Management Science, INFORMS, vol. 46(7), pages 893-911, July.
    3. Yu, Shiwei & Zheng, Shuhong & Li, Xia & Li, Longxi, 2018. "China can peak its energy-related carbon emissions before 2025: Evidence from industry restructuring," Energy Economics, Elsevier, vol. 73(C), pages 91-107.
    4. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    5. Jeon, Chanwoong & Lee, Jeongjin & Shin, Juneseuk, 2015. "Optimal subsidy estimation method using system dynamics and the real option model: Photovoltaic technology case," Applied Energy, Elsevier, vol. 142(C), pages 33-43.
    6. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
    7. Gazheli, Ardjan & van den Bergh, Jeroen, 2018. "Real options analysis of investment in solar vs. wind energy: Diversification strategies under uncertain prices and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2693-2704.
    8. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    9. Boyle, Phelim P., 1988. "A Lattice Framework for Option Pricing with Two State Variables," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(1), pages 1-12, March.
    10. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    11. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    12. Schiel, Kerry & Baume, Olivier & Caruso, Geoffrey & Leopold, Ulrich, 2016. "GIS-based modelling of shallow geothermal energy potential for CO2 emission mitigation in urban areas," Renewable Energy, Elsevier, vol. 86(C), pages 1023-1036.
    13. Kim, Kyung-Taek & Lee, Deok-Joo & Park, Sung-Joon, 2014. "Evaluation of R&D investments in wind power in Korea using real option," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 335-347.
    14. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    15. Arat, Halit & Arslan, Oguz, 2017. "Exergoeconomic analysis of district heating system boosted by the geothermal heat pump," Energy, Elsevier, vol. 119(C), pages 1159-1170.
    16. Renner, Marie, 2014. "Carbon prices and CCS investment: A comparative study between the European Union and China," Energy Policy, Elsevier, vol. 75(C), pages 327-340.
    17. Daniilidis, Alexandros & Alpsoy, Betül & Herber, Rien, 2017. "Impact of technical and economic uncertainties on the economic performance of a deep geothermal heat system," Renewable Energy, Elsevier, vol. 114(PB), pages 805-816.
    18. Carotenuto, Alberto & Figaj, Rafal Damian & Vanoli, Laura, 2017. "A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis," Energy, Elsevier, vol. 141(C), pages 2652-2669.
    19. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    20. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    21. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    22. Yu, Shiwei & Zheng, Yali & Li, Longxi, 2019. "A comprehensive evaluation of the development and utilization of China's regional renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 73-86.
    23. Somayeh Heydari & Nick Ovenden & Afzal Siddiqui, 2012. "Real options analysis of investment in carbon capture and sequestration technology," Computational Management Science, Springer, vol. 9(1), pages 109-138, February.
    24. Reuter, Wolf Heinrich & Fuss, Sabine & Szolgayová, Jana & Obersteiner, Michael, 2012. "Investment in wind power and pumped storage in a real options model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2242-2248.
    25. Myers, Stewart C., 1977. "Determinants of corporate borrowing," Journal of Financial Economics, Elsevier, vol. 5(2), pages 147-175, November.
    26. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    27. repec:dau:papers:123456789/12983 is not listed on IDEAS
    28. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    29. Lin, Boqiang & Wesseh, Presley K., 2013. "Valuing Chinese feed-in tariffs program for solar power generation: A real options analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 474-482.
    30. Lee, Shun-Chung & Shih, Li-Hsing, 2010. "Renewable energy policy evaluation using real option model -- The case of Taiwan," Energy Economics, Elsevier, vol. 32(Supplemen), pages 67-78, September.
    31. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    32. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    33. Fan, Ying & Mo, Jian-Lei & Zhu, Lei, 2013. "Evaluating coal bed methane investment in China based on a real options model," Resources Policy, Elsevier, vol. 38(1), pages 50-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhuming & Chen, Can & Lin, Tao & Chen, Xiaoguo, 2021. "The dynamic investment and exit decisions of venture capitals," The North American Journal of Economics and Finance, Elsevier, vol. 55(C).
    2. Shuangyan Li & Anum Shahzadi & Mingbo Zheng & Chun-Ping Chang, 2022. "The impacts of executives’ political connections on interactions between firm’s mergers, acquisitions, and performance," Economic Change and Restructuring, Springer, vol. 55(2), pages 653-679, May.
    3. Zhang, Yue-Jun & Wang, Wei, 2021. "How does China's carbon emissions trading (CET) policy affect the investment of CET-covered enterprises?," Energy Economics, Elsevier, vol. 98(C).
    4. Liu, Yue & Sun, Huaping & Meng, Bo & Jin, Shunlin & Chen, Bin, 2023. "How to purchase carbon emission right optimally for energy-consuming enterprises? Analysis based on optimal stopping model," Energy Economics, Elsevier, vol. 124(C).
    5. Yue Qi & Yue Wang, 2023. "Innovating and Pricing Carbon-Offset Options of Asian Styles on the Basis of Jump Diffusions and Fractal Brownian Motions," Mathematics, MDPI, vol. 11(16), pages 1-22, August.
    6. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    7. Dahlen, Niklas & Fehrenkötter, Rieke & Schreiter, Maximilian, 2024. "The new bond on the block — Designing a carbon-linked bond for sustainable investment projects," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 316-325.
    8. Zhou, Yuanqi & Yang, Jinqiang & Jia, Zhijie, 2023. "Optimizing energy efficiency investments in steel firms: A real options model considering carbon trading and tax cuts during challenging economic conditions," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    2. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
    3. Martín-Barrera, Gonzalo & Zamora-Ramírez, Constancio & González-González, José M., 2016. "Application of real options valuation for analysing the impact of public R&D financing on renewable energy projects: A company′s perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 292-301.
    4. Assereto, Martina & Byrne, Julie, 2021. "No real option for solar in Ireland: A real option valuation of utility scale solar investment in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Yiqing Li & Weiguo Yang & Lixin Tian & Jie Yang, 2018. "An Evaluation of Investment in a PV Power Generation Project in the Gobi Desert Using a Real Options Model," Energies, MDPI, vol. 11(1), pages 1-16, January.
    6. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    7. Zhang, M.M. & Zhou, D.Q. & Zhou, P. & Chen, H.T., 2017. "Optimal design of subsidy to stimulate renewable energy investments: The case of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 873-883.
    8. Felipe Isaza Cuervo & Sergio Botero Boterob, 2014. "Aplicación de las opciones reales en la toma de decisiones en los mercados de electricidad," Estudios Gerenciales, Universidad Icesi, November.
    9. Zhang, M.M. & Zhou, P. & Zhou, D.Q., 2016. "A real options model for renewable energy investment with application to solar photovoltaic power generation in China," Energy Economics, Elsevier, vol. 59(C), pages 213-226.
    10. Fan, Jing-Li & Xu, Mao & Yang, Lin & Zhang, Xian, 2019. "Benefit evaluation of investment in CCS retrofitting of coal-fired power plants and PV power plants in China based on real options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    11. Cheng, Cheng & Wang, Zhen & Liu, Mingming & Chen, Qiang & Gbatu, Abimelech Paye & Ren, Xiaohang, 2017. "Defer option valuation and optimal investment timing of solar photovoltaic projects under different electricity market systems and support schemes," Energy, Elsevier, vol. 127(C), pages 594-610.
    12. Nunes, Luis Eduardo & Lima, Marcus Vinicius Andrade de & Davison, Matthew & Leite, André Luis da Silva, 2021. "Switch and defer option in renewable energy projects: Evidences from Brazil," Energy, Elsevier, vol. 231(C).
    13. Mo, Jian-Lei & Agnolucci, Paolo & Jiang, Mao-Rong & Fan, Ying, 2016. "The impact of Chinese carbon emission trading scheme (ETS) on low carbon energy (LCE) investment," Energy Policy, Elsevier, vol. 89(C), pages 271-283.
    14. Zhang, M.M. & Wang, Qunwei & Zhou, Dequn & Ding, H., 2019. "Evaluating uncertain investment decisions in low-carbon transition toward renewable energy," Applied Energy, Elsevier, vol. 240(C), pages 1049-1060.
    15. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    16. Barbara Glensk & Reinhard Madlener, 2019. "Energiewende @ Risk: On the Continuation of Renewable Power Generation at the End of Public Policy Support," Energies, MDPI, vol. 12(19), pages 1-25, September.
    17. Zhang, Mingming & Liu, Liyun & Wang, Qunwei & Zhou, Dequn, 2020. "Valuing investment decisions of renewable energy projects considering changing volatility," Energy Economics, Elsevier, vol. 92(C).
    18. Yao, Xing & Fan, Ying & Zhu, Lei & Zhang, Xian, 2020. "Optimization of dynamic incentive for the deployment of carbon dioxide removal technology: A nonlinear dynamic approach combined with real options," Energy Economics, Elsevier, vol. 86(C).
    19. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    20. Tang, Bao-Jun & Zhou, Hui-Ling & Chen, Hao & Wang, Kai & Cao, Hong, 2017. "Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach," Energy Policy, Elsevier, vol. 105(C), pages 17-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.