IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319346.html
   My bibliography  Save this article

An improved flux density distribution model for a flat heliostat (iHFLCAL) compared with HFLCAL

Author

Listed:
  • He, Caitou
  • Zhao, Yuhong
  • Feng, Jieqing

Abstract

The simulation of the flux spot reflected by a flat heliostat is one of the fundamental problems in the central receiver system. In this paper, we propose an improved model based on Gaussian distribution assumption to more faithfully depict the flux density distribution on the receiver reflected by a flat heliostat, which is also the basis for study of the focusing heliostat. First, an imaginary flux density distribution is modeled by an elliptical Gaussian function in the image plane coordinate system. The relationship between the standard deviations of the Gaussian function and the heliostat length and width is revealed. Shading and blocking effects are carefully considered and addressed. Then, this distribution is mapped to the receiver plane through oblique parallel projection along the reflection direction of the heliostat based on the law of energy conservation and calculus. A state-of-the-art GPU-based ray tracing simulation method is adopted, and satisfactory consistency between the proposed model and the ray tracing result is found. The experiments and comparisons demonstrate that the proposed model is as efficient as but more accurate than the related Gaussian models.

Suggested Citation

  • He, Caitou & Zhao, Yuhong & Feng, Jieqing, 2019. "An improved flux density distribution model for a flat heliostat (iHFLCAL) compared with HFLCAL," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319346
    DOI: 10.1016/j.energy.2019.116239
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116239?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Caitou & Duan, Xiaoyue & Zhao, Yuhong & Feng, Jieqing, 2019. "An analytical flux density distribution model with a closed-form expression for a flat heliostat," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Huang, Weidong & Yu, Liang, 2018. "Development of a new flux density function for a focusing heliostat," Energy, Elsevier, vol. 151(C), pages 358-375.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiaokai & Guo, Jiangfeng & Han, Zengxiao & Cheng, Keyong & Huai, Xiulan, 2022. "Studies on thermal-hydraulic characteristics of supercritical CO2 flows with non-uniform heat flux in a tubular solar receiver," Renewable Energy, Elsevier, vol. 201(P1), pages 291-304.
    2. Song, Jifeng & Yang, Genben & Wang, Haiyu & Niu, Yisen & Hou, Hongjuan & Su, Ying & Wang, Qian & Zou, Zubing, 2022. "Influence of sunshape and optical error on spillover of concentrated flux in solar thermal power tower plant," Energy, Elsevier, vol. 256(C).
    3. He, Caitou & Zhao, Hanli & He, Qi & Zhao, Yuhong & Feng, Jieqing, 2021. "Analytical radiative flux model via convolution integral and image plane mapping," Energy, Elsevier, vol. 222(C).
    4. Lin, Xiaoxia & He, Caitou & Huang, Wenjun & Zhao, Yuhong & Feng, Jieqing, 2022. "GPU-based Monte Carlo ray tracing simulation considering refraction for central receiver system," Renewable Energy, Elsevier, vol. 193(C), pages 367-382.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Caitou & Zhao, Hanli & He, Qi & Zhao, Yuhong & Feng, Jieqing, 2021. "Analytical radiative flux model via convolution integral and image plane mapping," Energy, Elsevier, vol. 222(C).
    2. Song, Jifeng & Yang, Genben & Wang, Haiyu & Niu, Yisen & Hou, Hongjuan & Su, Ying & Wang, Qian & Zou, Zubing, 2022. "Influence of sunshape and optical error on spillover of concentrated flux in solar thermal power tower plant," Energy, Elsevier, vol. 256(C).
    3. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    4. Lin, Xiaoxia & He, Caitou & Huang, Wenjun & Zhao, Yuhong & Feng, Jieqing, 2022. "GPU-based Monte Carlo ray tracing simulation considering refraction for central receiver system," Renewable Energy, Elsevier, vol. 193(C), pages 367-382.
    5. Collado, Francisco J. & Guallar, Jesus, 2019. "Quick design of regular heliostat fields for commercial solar tower power plants," Energy, Elsevier, vol. 178(C), pages 115-125.
    6. Huang, Weidong & Yu, Liang & Hu, Peng, 2019. "An analytical solution for the solar flux density produced by a round focusing heliostat," Renewable Energy, Elsevier, vol. 134(C), pages 306-320.
    7. Liu, Zengqiang & Lin, Xiaoxia & Zhao, Yuhong & Feng, Jieqing, 2023. "Determination of simulation parameters in Monte Carlo ray tracing for radiative flux density distribution simulation," Energy, Elsevier, vol. 276(C).
    8. Ghirardi, Elisa & Brumana, Giovanni & Franchini, Giuseppe & Perdichizzi, Antonio, 2021. "Heliostat layout optimization for load-following solar tower plants," Renewable Energy, Elsevier, vol. 168(C), pages 393-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.