IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219318559.html
   My bibliography  Save this article

Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation

Author

Listed:
  • Elsoragaby, Suha
  • Yahya, Azmi
  • Mahadi, Muhammad Razif
  • Nawi, Nazmi Mat
  • Mairghany, Modather

Abstract

The analysis of energy and greenhouse gas emissions in this study was made in respect to both planting methods, transplanting and broadcast seeding methods to investigate the energy pattern of rice production in Malaysia. The field under transplanting method in the main season showed 8.72% lesser mean total energy input, 6.25% higher mean machinery energy, 55.06% lesser mean seed energy and 23.01% higher mean output energy than the field under broadcasting method. Fertilizer the highest contributor of energy inputs it contributed by 62% in both transplanting and broadcasting methods and fuel was the second-highest contributor. The share of direct and indirect energy in the fields under the transplanting method were 19% and 81% and in the fields under the broadcasting method were 17% and 83% respectively. While the share of renewable and non-renewable energy in the fields under the transplanting method were 7% and 93% and in the fields under the broadcasting method were 14% and 86% respectively. The harvesting operation has the highest mechanization index level (0.99) in both methods. While fertilizing and planting operation have the lowest mechanization index level. The mean energy ratio was 35.68% higher in transplanting than broadcasting (8.1 and 5.97). Fertilizer represents the highest contributor to the total GHG emissions in the two cultivation methods, transplanting and broadcasting and it represents 44% and 42% respectively. Among different types of chemical fertilizers, Nitrogen represents the higher contributor.

Suggested Citation

  • Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Analysis of energy use and greenhouse gas emissions (GHG) of transplanting and broadcast seeding wetland rice cultivation," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318559
    DOI: 10.1016/j.energy.2019.116160
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219318559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116160?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassiri, Seyed Mehdi & Singh, Surendra, 2009. "Study on energy use efficiency for paddy crop using data envelopment analysis (DEA) technique," Applied Energy, Elsevier, vol. 86(7-8), pages 1320-1325, July.
    2. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    3. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    4. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    5. Hatirli, Selim Adem & Ozkan, Burhan & Fert, Cemal, 2006. "Energy inputs and crop yield relationship in greenhouse tomato production," Renewable Energy, Elsevier, vol. 31(4), pages 427-438.
    6. Vladimir Milovanovic & Luboš Smutka, 2017. "Asian Countries in the Global Rice Market," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 679-688.
    7. Rafiee, Shahin & Mousavi Avval, Seyed Hashem & Mohammadi, Ali, 2010. "Modeling and sensitivity analysis of energy inputs for apple production in Iran," Energy, Elsevier, vol. 35(8), pages 3301-3306.
    8. Pishgar-Komleh, S.H. & Sefeedpari, P. & Rafiee, S., 2011. "Energy and economic analysis of rice production under different farm levels in Guilan province of Iran," Energy, Elsevier, vol. 36(10), pages 5824-5831.
    9. Canakci, M. & Akinci, I., 2006. "Energy use pattern analyses of greenhouse vegetable production," Energy, Elsevier, vol. 31(8), pages 1243-1256.
    10. Mohammadi, Ali & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Rafiee, Hamed, 2010. "Energy inputs – yield relationship and cost analysis of kiwifruit production in Iran," Renewable Energy, Elsevier, vol. 35(5), pages 1071-1075.
    11. Nabavi-Pelesaraei, Ashkan & Hosseinzadeh-Bandbafha, Homa & Qasemi-Kordkheili, Peyman & Kouchaki-Penchah, Hamed & Riahi-Dorcheh, Farshid, 2016. "Applying optimization techniques to improve of energy efficiency and GHG (greenhouse gas) emissions of wheat production," Energy, Elsevier, vol. 103(C), pages 672-678.
    12. Muazu, A. & Yahya, A. & Ishak, W.I.W. & Khairunniza-Bejo, S., 2015. "Energy audit for sustainable wetland paddy cultivation in Malaysia," Energy, Elsevier, vol. 87(C), pages 182-191.
    13. Yuan, Shen & Peng, Shaobing, 2017. "Input-output energy analysis of rice production in different crop management practices in central China," Energy, Elsevier, vol. 141(C), pages 1124-1132.
    14. Eduardo Aguilera & Gloria I. Guzmán & Juan Infante-Amate & David Soto & Roberto García-Ruiz & Antonio Herrera & Inmaculada Villa & Eva Torremocha & Guiomar Carranza & Manuel González de Molina, 2015. "Embodied energy in agricultural inputs. Incorporating a historical perspective," Documentos de Trabajo de la Sociedad de Estudios de Historia Agraria 1507, Sociedad de Estudios de Historia Agraria.
    15. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2012. "Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production," Energy, Elsevier, vol. 37(1), pages 171-176.
    16. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    17. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    18. Shamshirband, Shahaboddin & Khoshnevisan, Benyamin & Yousefi, Marziye & Bolandnazar, Elham & Anuar, Nor Badrul & Abdul Wahab, Ainuddin Wahid & Khan, Saif Ur Rehman, 2015. "A multi-objective evolutionary algorithm for energy management of agricultural systems—A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 457-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martinho, Vítor João Pereira Domingues, 2021. "Direct and indirect energy consumption in farming: Impacts from fertilizer use," Energy, Elsevier, vol. 236(C).
    2. Gyu-Gang Han & Jun-Hyuk Jeon & Yong-Jin Cho & Myoung-Ho Kim & Seong-Min Kim, 2021. "Analysis of Air Pollutant Emissions for Mechanized Rice Cultivation in Korea," Agriculture, MDPI, vol. 11(12), pages 1-11, December.
    3. Fu, Hao & Li, Na & Cheng, Qingyue & Liao, Qin & Nie, Jiangxia & Yin, Huilai & Shu, Chuanhai & Li, Leilei & Wang, Zhonglin & Sun, Yongjian & Chen, Zongkui & Ma, Jun & Zhang, Xiaoli & Li, Liangyu & Yang, 2024. "Energy, environmental, and economic benefits of integrated paddy field farming," Energy, Elsevier, vol. 297(C).
    4. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Xiaoli & Liao, Qin & Fu, Hao & Cheng, Qingyue & Chen, Zongkui & Sun, Yongjian & Ma, Jun & Zhang, Jinyue & Li, Liangyu & Li, Na, 2023. "Unmanned aerial vehicle direct seeding or integrated mechanical transplanting, which will be the next step for mechanized rice production in China? —A comparison based on energy use efficiency and eco," Energy, Elsevier, vol. 273(C).
    5. Saeed Solaymani, 2023. "Impacts of Environmental Variables on Rice Production in Malaysia," World, MDPI, vol. 4(3), pages 1-17, July.
    6. Naqvi, Salman Raza & Naqvi, Muhammad & Ammar Taqvi, Syed Ali & Iqbal, Farukh & Inayat, Abrar & Khoja, Asif Hussain & Mehran, Muhammad Taqi & Ayoub, Muhammad & Shahbaz, Muhammad & Saidina Amin, Nor Ais, 2021. "Agro-industrial residue gasification feasibility in captive power plants: A South-Asian case study," Energy, Elsevier, vol. 214(C).
    7. Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Yang, Zhiyuan & Zhu, Yuemei & Zhang, Jinyue & Li, Xuyi & Ma, Peng & Sun, Jiawei & Sun, Yongjian & Ma, Jun & Li, Na, 2022. "Comparison of energy use between fully mechanized and semi-mechanized rice production in Southwest China," Energy, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    2. Singh, Pritpal & Singh, Gurdeep & Sodhi, G.P.S., 2019. "Energy auditing and optimization approach for improving energy efficiency of rice cultivation in south-western Punjab, India," Energy, Elsevier, vol. 174(C), pages 269-279.
    3. Morteza Zangeneh & Narges Banaeian & Sean Clark, 2021. "Meta-Analysis on Energy-Use Patterns of Cropping Systems in Iran," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    4. Soltanali, Hamzeh & Nikkhah, Amin & Rohani, Abbas, 2017. "Energy audit of Iranian kiwifruit production using intelligent systems," Energy, Elsevier, vol. 139(C), pages 646-654.
    5. Bhunia, Snehasish & Karmakar, Subrata & Bhattacharjee, Suvendu & Roy, Kingshuk & Kanthal, Sahely & Pramanick, Mahadev & Baishya, Aniket & Mandal, Biswapati, 2021. "Optimization of energy consumption using data envelopment analysis (DEA) in rice-wheat-green gram cropping system under conservation tillage practices," Energy, Elsevier, vol. 236(C).
    6. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein, 2013. "Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach," Energy, Elsevier, vol. 55(C), pages 676-682.
    7. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    8. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza, 2012. "Energy consumption flow and econometric models of two plum cultivars productions in Tehran province of Iran," Energy, Elsevier, vol. 44(1), pages 211-216.
    9. Yongqiang Zhang & Hao Sun & Maosheng Ge & Hang Zhao & Yifan Hu & Changyue Cui & Zhibin Wu, 2023. "Difference in Energy Input and Output in Agricultural Production under Surface Irrigation and Water-Saving Irrigation: A Case Study of Kiwi Fruit in Shaanxi," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    10. Pishgar-Komleh, Seyyed Hassan & Omid, Mahmoud & Heidari, Mohammad Davoud, 2013. "On the study of energy use and GHG (greenhouse gas) emissions in greenhouse cucumber production in Yazd province," Energy, Elsevier, vol. 59(C), pages 63-71.
    11. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    12. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    13. Burak Saltuk & Barbara Jagosz & Osman Gökdoğan & Roman Rolbiecki & Atılgan Atilgan & Stanisław Rolbiecki, 2022. "An Investigation on the Energy Balance and Greenhouse Gas Emissions of Orange Production in Turkey," Energies, MDPI, vol. 15(22), pages 1-14, November.
    14. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    15. Elahi, Ehsan & Zhang, Zhixin & Khalid, Zainab & Xu, Haiyun, 2022. "Application of an artificial neural network to optimise energy inputs: An energy- and cost-saving strategy for commercial poultry farms," Energy, Elsevier, vol. 244(PB).
    16. Nabavi-Pelesaraei, Ashkan & Rafiee, Shahin & Mohtasebi, Seyed Saeid & Hosseinzadeh-Bandbafha, Homa & Chau, Kwok-wing, 2019. "Assessment of optimized pattern in milling factories of rice production based on energy, environmental and economic objectives," Energy, Elsevier, vol. 169(C), pages 1259-1273.
    17. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Mousazadeh, Hossein & Shamshirband, Shahaboddin & Hamid, Siti Hafizah Ab, 2015. "Developing a fuzzy clustering model for better energy use in farm management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 27-34.
    18. Rajabi Hamedani, Sara & Keyhani, Alireza & Alimardani, Reza, 2011. "Energy use patterns and econometric models of grape production in Hamadan province of Iran," Energy, Elsevier, vol. 36(11), pages 6345-6351.
    19. Htwe, Than & Sinutok, Sutinee & Chotikarn, Ponlachart & Amin, Nowshad & Akhtaruzzaman, Md & Techato, Kuaanan & Hossain, Tareq, 2021. "Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar," Energy, Elsevier, vol. 214(C).
    20. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219318559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.