IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v175y2019icp393-401.html
   My bibliography  Save this article

Complementarity assessment of south Greenland katabatic flows and West Europe wind regimes

Author

Listed:
  • Radu, David
  • Berger, Mathias
  • Fonteneau, Raphaël
  • Hardy, Simon
  • Fettweis, Xavier
  • Le Du, Marc
  • Panciatici, Patrick
  • Balea, Lucian
  • Ernst, Damien

Abstract

Current global environmental challenges require vigorous and diverse actions in the energy sector. One solution that has recently attracted interest consists in harnessing high-quality variable renewable energy resources in remote locations, while using transmission links to transport the power to end users. In this context, a comparison of western European and Greenland wind regimes is proposed. By leveraging a regional atmospheric model specifically designed to accurately capture polar phenomena, local climatic features of southern Greenland are identified to be particularly conducive to extensive renewable electricity generation from wind. A methodology to assess how connecting remote locations to major demand centres would benefit the latter from a resource availability standpoint is introduced and applied to the aforementioned Europe-Greenland case study, showing superior and complementary wind generation potential in the considered region of Greenland with respect to selected European sites.

Suggested Citation

  • Radu, David & Berger, Mathias & Fonteneau, Raphaël & Hardy, Simon & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2019. "Complementarity assessment of south Greenland katabatic flows and West Europe wind regimes," Energy, Elsevier, vol. 175(C), pages 393-401.
  • Handle: RePEc:eee:energy:v:175:y:2019:i:c:p:393-401
    DOI: 10.1016/j.energy.2019.03.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304529
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    2. Erdle, Steffen, 2010. "The DESERTEC initiative: powering the development perspectives of Southern Mediterranean countries?," IDOS Discussion Papers 12/2010, German Institute of Development and Sustainability (IDOS).
    3. Chatzivasileiadis, Spyros & Ernst, Damien & Andersson, Göran, 2013. "The Global Grid," Renewable Energy, Elsevier, vol. 57(C), pages 372-383.
    4. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    2. Ávila R., Leandro & Mine, Miriam R.M. & Kaviski, Eloy & Detzel, Daniel H.M. & Fill, Heinz D. & Bessa, Marcelo R. & Pereira, Guilherme A.A., 2020. "Complementarity modeling of monthly streamflow and wind speed regimes based on a copula-entropy approach: A Brazilian case study," Applied Energy, Elsevier, vol. 259(C).
    3. Jani, Hardik K. & Kachhwaha, Surendra Singh & Nagababu, Garlapati & Das, Alok, 2022. "Temporal and spatial simultaneity assessment of wind-solar energy resources in India by statistical analysis and machine learning clustering approach," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    2. Pflugfelder, Yannik & Kramer, Hendrik & Weber, Christoph, 2024. "A novel approach to generate bias-corrected regional wind infeed timeseries based on reanalysis data," Applied Energy, Elsevier, vol. 361(C).
    3. Reinhold Lehneis & Daniela Thrän, 2023. "Temporally and Spatially Resolved Simulation of the Wind Power Generation in Germany," Energies, MDPI, vol. 16(7), pages 1-16, April.
    4. Onodera, Hiroaki & Delage, Rémi & Nakata, Toshihiko, 2024. "The role of regional renewable energy integration in electricity decarbonization—A case study of Japan," Applied Energy, Elsevier, vol. 363(C).
    5. Louise Christine Dammeier & Joyce H. C. Bosmans & Mark A. J. Huijbregts, 2023. "Variability in greenhouse gas footprints of the global wind farm fleet," Journal of Industrial Ecology, Yale University, vol. 27(1), pages 272-282, February.
    6. Zhang, Juntao & Cheng, Chuntian & Yu, Shen, 2024. "Recognizing the mapping relationship between wind power output and meteorological information at a province level by coupling GIS and CNN technologies," Applied Energy, Elsevier, vol. 360(C).
    7. Kies, Alexander & Schyska, Bruno U. & Bilousova, Mariia & El Sayed, Omar & Jurasz, Jakub & Stoecker, Horst, 2021. "Critical review of renewable generation datasets and their implications for European power system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. de Aquino Ferreira, Saulo Custodio & Cyrino Oliveira, Fernando Luiz & Maçaira, Paula Medina, 2022. "Validation of the representativeness of wind speed time series obtained from reanalysis data for Brazilian territory," Energy, Elsevier, vol. 258(C).
    9. Katikas, Loukas & Dimitriadis, Panayiotis & Koutsoyiannis, Demetris & Kontos, Themistoklis & Kyriakidis, Phaedon, 2021. "A stochastic simulation scheme for the long-term persistence, heavy-tailed and double periodic behavior of observational and reanalysis wind time-series," Applied Energy, Elsevier, vol. 295(C).
    10. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    11. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    12. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    13. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    14. Emily Cowin & Changlong Wang & Stuart D. C. Walsh, 2023. "Assessing Predictions of Australian Offshore Wind Energy Resources from Reanalysis Datasets," Energies, MDPI, vol. 16(8), pages 1-21, April.
    15. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Kena Likassa Nefabas & Lennart Söder & Mengesha Mamo & Jon Olauson, 2021. "Modeling of Ethiopian Wind Power Production Using ERA5 Reanalysis Data," Energies, MDPI, vol. 14(9), pages 1-17, April.
    17. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    18. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    19. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    20. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:175:y:2019:i:c:p:393-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.