IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v174y2019icp1133-1144.html
   My bibliography  Save this article

Analysis of a closed-loop water-cooled refrigeration system in the food retail industry: A UK case study

Author

Listed:
  • Efstratiadi, Marily
  • Acha, Salvador
  • Shah, Nilay
  • Markides, Christos N.

Abstract

Refrigeration in supermarkets accounts between 30% and 60% of total electricity demand in UK stores. The aim of this study is to conduct a pre-feasibility analysis of whether the use of a water-cooled configuration rejecting heat to the soil can improve the overall cooling performance of commercial refrigeration systems against air-cooled designs. In this work, a model simulating the operation of an existing refrigeration system is presented and validated against field data measurements taken from a supermarket. The examined system is used as a baseline and then modified to evaluate the impact of installing a water-cooled gas cooler. Results indicate that the use of water-cooled gas coolers has the potential to reduce electrical consumption of refrigeration systems by up to a factor of 5 when external temperatures are high. Overall, annual operation indicates the water-cooled alternative uses 3% less electricity than the air-cooled approach. A hybrid system is also considered consisting of coupled air-cooled and water-cooled units operating in parallel, for which an energy reduction of 6% is obtained compared against the baseline system. An economic evaluation of these systems shows promising results with a payback period of about 5 years for systems installed in new stores, although retrofits are costlier.

Suggested Citation

  • Efstratiadi, Marily & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2019. "Analysis of a closed-loop water-cooled refrigeration system in the food retail industry: A UK case study," Energy, Elsevier, vol. 174(C), pages 1133-1144.
  • Handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1133-1144
    DOI: 10.1016/j.energy.2019.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219304086
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ge, Y.T. & Tassou, S.A. & Santosa, I. Dewa & Tsamos, K., 2015. "Design optimisation of CO2 gas cooler/condenser in a refrigeration system," Applied Energy, Elsevier, vol. 160(C), pages 973-981.
    2. Leffler, Robert A. & Bradshaw, Craig R. & Groll, Eckhard A. & Garimella, Suresh V., 2012. "Alternative heat rejection methods for power plants," Applied Energy, Elsevier, vol. 92(C), pages 17-25.
    3. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarabia Escriva, Emilio José & Hart, Matthew & Acha, Salvador & Soto Francés, Víctor & Shah, Nilay & Markides, Christos N., 2022. "Techno-economic evaluation of integrated energy systems for heat recovery applications in food retail buildings," Applied Energy, Elsevier, vol. 305(C).
    2. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    3. Le Brun, Niccolo & Simpson, Michael & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "Techno-economic potential of low-temperature, jacket-water heat recovery from stationary internal combustion engines with organic Rankine cycles: A cross-sector food-retail study," Applied Energy, Elsevier, vol. 274(C).
    4. Maouris, Georgios & Sarabia Escriva, Emilio Jose & Acha, Salvador & Shah, Nilay & Markides, Christos N., 2020. "CO2 refrigeration system heat recovery and thermal storage modelling for space heating provision in supermarkets: An integrated approach," Applied Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    2. Dennis Dreier & Mark Howells, 2019. "OSeMOSYS-PuLP: A Stochastic Modeling Framework for Long-Term Energy Systems Modeling," Energies, MDPI, vol. 12(7), pages 1-26, April.
    3. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    4. Briera, Thibault & Lefèvre, Julien, 2024. "Reducing the cost of capital through international climate finance to accelerate the renewable energy transition in developing countries," Energy Policy, Elsevier, vol. 188(C).
    5. Zhu, Tong & Curtis, John & Clancy, Matthew, 2023. "Modelling barriers to low-carbon technologies in energy system analysis: The example of renewable heat in Ireland," Applied Energy, Elsevier, vol. 330(PA).
    6. Vahidreza Yousefi & Siamak Haji Yakhchali & Jolanta Tamošaitienė, 2019. "Application of Duration Measure in Quantifying the Sensitivity of Project Returns to Changes in Discount Rates," Administrative Sciences, MDPI, vol. 9(1), pages 1-14, February.
    7. Abdulwahid, Alhasan Ali & Zhao, Hongxia & Wang, Zheng & Liu, Guangdi & Khalil, Essam E & Lai, Yanhua & Han, Jitian, 2022. "Thermo-economic comparison of two models of combined transcritical CO2 refrigeration and multi-effect desalination system," Applied Energy, Elsevier, vol. 308(C).
    8. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    9. Hu, Siyang & Leung, Dennis Y.C. & Chan, John C.Y., 2017. "Numerical modelling and comparison of the performance of diffuser-type solar chimneys for power generation," Applied Energy, Elsevier, vol. 204(C), pages 948-957.
    10. Jaskólski, Marcin, 2016. "Modelling long-term technological transition of Polish power system using MARKAL: Emission trade impact," Energy Policy, Elsevier, vol. 97(C), pages 365-377.
    11. Dosa, Ion, 2014. "Power Plant Waste Heat Recovery for Household Heating Using Heat Pumps," MPRA Paper 62961, University Library of Munich, Germany.
    12. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.
    13. Gaete-Morales, Carlos & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2019. "A novel framework for development and optimisation of future electricity scenarios with high penetration of renewables and storage," Applied Energy, Elsevier, vol. 250(C), pages 1657-1672.
    14. Ge, Y.T. & Li, L. & Luo, X. & Tassou, S.A., 2018. "Performance evaluation of a low-grade power generation system with CO2 transcritical power cycles," Applied Energy, Elsevier, vol. 227(C), pages 220-230.
    15. Haotian Liu & Justin Weibel & Eckhard Groll, 2017. "Performance Analysis of an Updraft Tower System for Dry Cooling in Large-Scale Power Plants," Energies, MDPI, vol. 10(11), pages 1-23, November.
    16. van Zuijlen, Bas & Zappa, William & Turkenburg, Wim & van der Schrier, Gerard & van den Broek, Machteld, 2019. "Cost-optimal reliable power generation in a deep decarbonisation future," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Fischer, Robert & Toffolo, Andrea, 2022. "Is total system cost minimization fair to all the actors of an energy system? Not according to game theory," Energy, Elsevier, vol. 239(PC).
    18. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, vol. 10(12), pages 1-27, November.
    19. Zhang, Xinxin & Kobayashi, Noriyuki & He, Maogang & Wang, Jingfu, 2016. "An organic group contribution approach to radiative efficiency estimation of organic working fluid," Applied Energy, Elsevier, vol. 162(C), pages 1205-1210.
    20. Moreno-Leiva, Simón & Haas, Jannik & Nowak, Wolfgang & Kracht, Willy & Eltrop, Ludger & Breyer, Christian, 2021. "Integration of seawater pumped storage and desalination in multi-energy systems planning: The case of copper as a key material for the energy transition," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:174:y:2019:i:c:p:1133-1144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.