IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v164y2022ics0301421522000969.html
   My bibliography  Save this article

Achieving −55% GHG emissions in 2030 in Wallonia, Belgium: Insights from the TIMES-Wal energy system model

Author

Listed:
  • Coppens, Léo
  • Gargiulo, Maurizio
  • Orsini, Marco
  • Arnould, Nathalie

Abstract

The Walloon Region has undertaken the ambitious engagement to reduce its greenhouse gases (GHG) emissions up to −55% in 2030. In this context, a regional model of the energy system is a useful tool to give insights to policy makers. We address the lack of an existing integrated tool by developing a technology-rich, bottom-up model for the region. The goal of this paper is twofold: we present the model and its functioning and then we analyse a cost-optimal way to reach the −55% regional target. Firstly, we describe the methodology, discussing how we build the sectors of our model and how the optimisation works. Secondly, we run the model with a constraint on GHG emissions to assess the impact of the mitigation target. We show that the total system cost of such an ambitious mitigation scenario is only ∼0.5% higher than the cost of an unconstrained reference scenario and that emissions reduction must start as soon as possible to stay on the cost-effective trajectory. Concerning technologies, windmills, photovoltaic (PV) panels and building renovations are cost-optimal solutions even with high discount rates.

Suggested Citation

  • Coppens, Léo & Gargiulo, Maurizio & Orsini, Marco & Arnould, Nathalie, 2022. "Achieving −55% GHG emissions in 2030 in Wallonia, Belgium: Insights from the TIMES-Wal energy system model," Energy Policy, Elsevier, vol. 164(C).
  • Handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522000969
    DOI: 10.1016/j.enpol.2022.112871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421522000969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2022.112871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Christopher & Yeh, Sonia & Zakerinia, Saleh & Ramea, Kalai & McCollum, David, 2015. "Achieving California's 80% greenhouse gas reduction target in 2050: Technology, policy and scenario analysis using CA-TIMES energy economic systems model," Energy Policy, Elsevier, vol. 77(C), pages 118-130.
    2. Moritz A. Drupp & Mark C. Freeman & Ben Groom & Frikk Nesje, 2018. "Discounting Disentangled," American Economic Journal: Economic Policy, American Economic Association, vol. 10(4), pages 109-134, November.
    3. Vaillancourt, Kathleen & Alcocer, Yuri & Bahn, Olivier & Fertel, Camille & Frenette, Erik & Garbouj, Hichem & Kanudia, Amit & Labriet, Maryse & Loulou, Richard & Marcy, Mathilde & Neji, Yosra & Waaub,, 2014. "A Canadian 2050 energy outlook: Analysis with the multi-regional model TIMES-Canada," Applied Energy, Elsevier, vol. 132(C), pages 56-65.
    4. James Glynn & Maurizio Gargiulo & Alessandro Chiodi & Paul Deane & Fionn Rogan & Brian Ó Gallachóir, 2019. "Zero carbon energy system pathways for Ireland consistent with the Paris Agreement," Climate Policy, Taylor & Francis Journals, vol. 19(1), pages 30-42, January.
    5. Cosmi, C. & Di Leo, S. & Loperte, S. & Macchiato, M. & Pietrapertosa, F. & Salvia, M. & Cuomo, V., 2009. "A model for representing the Italian energy system: The NEEDS-TIMES experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 763-776, May.
    6. Chiodi, Alessandro & Gargiulo, Maurizio & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2020 non-ETS GHG emissions reduction targets on Ireland′s energy system," Energy Policy, Elsevier, vol. 62(C), pages 1438-1452.
    7. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    8. Lind, Arne & Rosenberg, Eva & Seljom, Pernille & Espegren, Kari & Fidje, Audun & Lindberg, Karen, 2013. "Analysis of the EU renewable energy directive by a techno-economic optimisation model," Energy Policy, Elsevier, vol. 60(C), pages 364-377.
    9. García-Gusano, Diego & Espegren, Kari & Lind, Arne & Kirkengen, Martin, 2016. "The role of the discount rates in energy systems optimisation models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 56-72.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Leo, Senatro & Pietrapertosa, Filomena & Salvia, Monica & Cosmi, Carmelina, 2021. "Contribution of the Basilicata region to decarbonisation of the energy system: results of a scenario analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    4. Mulholland, Eamonn & O'Shea, Richard S.K. & Murphy, Jerry D. & Ó Gallachóir, Brian P., 2016. "Low carbon pathways for light goods vehicles in Ireland," Research in Transportation Economics, Elsevier, vol. 57(C), pages 53-62.
    5. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    6. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Lukáš Rečka & Milan Ščasný, 2017. "Impacts of Reclassified Brown Coal Reserves on the Energy System and Deep Decarbonisation Target in the Czech Republic," Energies, MDPI, vol. 10(12), pages 1-27, November.
    8. Levasseur, Annie & Bahn, Olivier & Beloin-Saint-Pierre, Didier & Marinova, Mariya & Vaillancourt, Kathleen, 2017. "Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach," Applied Energy, Elsevier, vol. 198(C), pages 440-452.
    9. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    10. Seljom, Pernille & Tomasgard, Asgeir, 2017. "The impact of policy actions and future energy prices on the cost-optimal development of the energy system in Norway and Sweden," Energy Policy, Elsevier, vol. 106(C), pages 85-102.
    11. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    12. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    13. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    14. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    15. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    16. Zhou, Yuwen & Tian, Lixin & Yang, Xiaoguang & Wan, Bingyue, 2024. "Robust green Schumpeterian endogenous growth model and spatial Kuznets curve," Energy Economics, Elsevier, vol. 133(C).
    17. Wakiyama, Takako & Zusman, Eric, 2021. "The impact of electricity market reform and subnational climate policy on carbon dioxide emissions across the United States: A path analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Hänsel, Martin C. & Quaas, Martin F., 2018. "Intertemporal Distribution, Sufficiency, and the Social Cost of Carbon," Ecological Economics, Elsevier, vol. 146(C), pages 520-535.
    19. Tattini, Jacopo & Ramea, Kalai & Gargiulo, Maurizio & Yang, Christopher & Mulholland, Eamonn & Yeh, Sonia & Karlsson, Kenneth, 2018. "Improving the representation of modal choice into bottom-up optimization energy system models – The MoCho-TIMES model," Applied Energy, Elsevier, vol. 212(C), pages 265-282.
    20. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:164:y:2022:i:c:s0301421522000969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.