IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp1141-1153.html
   My bibliography  Save this article

The development of a hydrocarbon high temperature heat pump for waste heat recovery

Author

Listed:
  • Bamigbetan, O.
  • Eikevik, T.M.
  • Nekså, P.
  • Bantle, M.
  • Schlemminger, C.

Abstract

Waste heat is an abundant resource that if recovered with a heat pump would increase energy efficiency in industrial processes. This will provide improvements in heat utilization and reduce the environmental impact of greenhouse gas emissions from the combustion of fossil fuel. A hydrocarbon high temperature heat pump has been developed to demonstrate the potential to deliver heat at a temperature of 115 °C. The heat pump provides heat for applications such as drying, pasteurization and other processes. Using hydrocarbons, the heat pump aims for a clean energy system. This paper reports on a 20 kW capacity cascade heat pump with propane in the low temperature cycle and butane in the high temperature cycle. Based on a theoretical model, an experimental setup is built with standard components that are commercially available. A prototype compressor is investigated for its performance at high temperature conditions. The heat pump can recover waste heat at 30 °C and deliver heat up to 115 °C. With an average heating coefficient of performance (COP) of 3.1 for a temperature lift of 58–72 K, the heat pump is a more cost efficient and environmentally friendly system compared to existing solutions of a steam boiler.

Suggested Citation

  • Bamigbetan, O. & Eikevik, T.M. & Nekså, P. & Bantle, M. & Schlemminger, C., 2019. "The development of a hydrocarbon high temperature heat pump for waste heat recovery," Energy, Elsevier, vol. 173(C), pages 1141-1153.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1141-1153
    DOI: 10.1016/j.energy.2019.02.159
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219303585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.159?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    2. Kim, Jiyoung & Park, Seong-Ryong & Baik, Young-Jin & Chang, Ki-Chang & Ra, Ho-Sang & Kim, Minsung & Kim, Yongchan, 2013. "Experimental study of operating characteristics of compression/absorption high-temperature hybrid heat pump using waste heat," Renewable Energy, Elsevier, vol. 54(C), pages 13-19.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M., 2010. "Advances in heat pump systems: A review," Applied Energy, Elsevier, vol. 87(12), pages 3611-3624, December.
    4. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Men, Yiyu & Liu, Xiaohua & Zhang, Tao, 2021. "A review of boiler waste heat recovery technologies in the medium-low temperature range," Energy, Elsevier, vol. 237(C).
    2. Dong, Yixiu & Yan, Hongzhi & Wang, Ruzhu, 2024. "Significant thermal upgrade via cascade high temperature heat pump with low GWP working fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    3. Jian Sun & Yinwu Wang & Yu Qin & Guoshun Wang & Ran Liu & Yongping Yang, 2023. "A Review of Super-High-Temperature Heat Pumps over 100 °C," Energies, MDPI, vol. 16(12), pages 1-18, June.
    4. PELELLA, Francesco & ZSEMBINSZKI, Gabriel & VISCITO, Luca & William MAURO, Alfonso & CABEZA, Luisa F., 2023. "Thermo-economic optimization of a multi-source (air/sun/ground) residential heat pump with a water/PCM thermal storage," Applied Energy, Elsevier, vol. 331(C).
    5. Pang, Liping & Luo, Kun & Yuan, Yanping & Mao, Xiaodong & Fang, Yufeng, 2020. "Thermal performance of helicopter air conditioning system with lube oil source (LOS) heat pump," Energy, Elsevier, vol. 190(C).
    6. Fangtian Sun & Yonghua Xie & Svend Svendsen & Lin Fu, 2020. "New Low-Temperature Central Heating System Integrated with Industrial Exhausted Heat Using Distributed Electric Compression Heat Pumps for Higher Energy Efficiency," Energies, MDPI, vol. 13(24), pages 1-17, December.
    7. Qichen Wang & Zhengmeng Hou & Yilin Guo & Liangchao Huang & Yanli Fang & Wei Sun & Yuhan Ge, 2023. "Enhancing Energy Transition through Sector Coupling: A Review of Technologies and Models," Energies, MDPI, vol. 16(13), pages 1-31, July.
    8. Obika, Echezona & Heberle, Florian & Brüggemann, Dieter, 2024. "Thermodynamic analysis of novel mixtures including siloxanes and cyclic hydrocarbons for high-temperature heat pumps," Energy, Elsevier, vol. 294(C).
    9. Pang, Liping & Ma, Desheng & Luo, Kun & Mao, Xiaodong & Yuan, Yanping, 2022. "Performance of an Integrated Thermal Management System for helicopter," Energy, Elsevier, vol. 239(PD).
    10. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Jiang, Jiatong & Hu, Bin & Wang, R.Z. & Deng, Na & Cao, Feng & Wang, Chi-Chuan, 2022. "A review and perspective on industry high-temperature heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
    4. Uusitalo, Antti & Turunen-Saaresti, Teemu & Honkatukia, Juha & Tiainen, Jonna & Jaatinen-Värri, Ahti, 2020. "Numerical analysis of working fluids for large scale centrifugal compressor driven cascade heat pumps upgrading waste heat," Applied Energy, Elsevier, vol. 269(C).
    5. Meroni, Andrea & Zühlsdorf, Benjamin & Elmegaard, Brian & Haglind, Fredrik, 2018. "Design of centrifugal compressors for heat pump systems," Applied Energy, Elsevier, vol. 232(C), pages 139-156.
    6. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Mota-Babiloni, Adrián & Mateu-Royo, Carlos & Navarro-Esbrí, Joaquín & Molés, Francisco & Amat-Albuixech, Marta & Barragán-Cervera, Ángel, 2018. "Optimisation of high-temperature heat pump cascades with internal heat exchangers using refrigerants with low global warming potential," Energy, Elsevier, vol. 165(PB), pages 1248-1258.
    8. Liu, Hua & Zhao, Baiyang & Zhang, Zhiping & Li, Hongbo & Hu, Bin & Wang, R.Z., 2020. "Experimental validation of an advanced heat pump system with high-efficiency centrifugal compressor," Energy, Elsevier, vol. 213(C).
    9. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    10. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    11. Natanael Bolson & Maxim Yutkin & Tadeusz Patzek, 2023. "Primary Power Analysis of a Global Electrification Scenario," Sustainability, MDPI, vol. 15(19), pages 1-20, October.
    12. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    13. Guo, Xiaochao & Ma, Zhixian & Zhang, Jili, 2020. "Performance analysis of a novel integrated home energy system with freezing latent heat collection," Applied Energy, Elsevier, vol. 264(C).
    14. Yecid Muñoz-Maldonado & Edgar Correa-Quintana & Adalberto Ospino-Castro, 2023. "Electrification of Industrial Processes as an Alternative to Replace Conventional Thermal Power Sources," Energies, MDPI, vol. 16(19), pages 1-20, September.
    15. Settino, Jessica & Sant, Tonio & Micallef, Christopher & Farrugia, Mario & Spiteri Staines, Cyril & Licari, John & Micallef, Alexander, 2018. "Overview of solar technologies for electricity, heating and cooling production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 892-909.
    16. Hu, Bin & Liu, Hua & Jiang, Jiatong & Zhang, Zhiping & Li, Hongbo & Wang, R.Z., 2022. "Ten megawatt scale vapor compression heat pump for low temperature waste heat recovery: Onsite application research," Energy, Elsevier, vol. 238(PB).
    17. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).
    18. Wu, Di & Jiang, Jiatong & Hu, Bin & Wang, R.Z., 2020. "Experimental investigation on the performance of a very high temperature heat pump with water refrigerant," Energy, Elsevier, vol. 190(C).
    19. Guillermo Martínez-Rodríguez & Cristobal Díaz-de-León & Amanda L. Fuentes-Silva & Juan-Carlos Baltazar & Rafael García-Gutiérrez, 2023. "Detailed Thermo-Economic Assessment of a Heat Pump for Industrial Applications," Energies, MDPI, vol. 16(6), pages 1-12, March.
    20. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:1141-1153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.