IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v173y2019icp109-120.html
   My bibliography  Save this article

Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature

Author

Listed:
  • Fan, Weidong
  • Wu, Xiaofeng
  • Guo, Hao
  • Zhu, Jiangtao
  • Liu, Peng
  • Chen, Can
  • Wang, Yong

Abstract

In the past, few studies were reported on advanced air-staged combustion (AASC) for achieving deep NO reduction in furnaces. Therefore, a fixed-bed reactor was employed to uncover the role of injecting NH3 on NO reduction in the reduction zone of the AASC process. Four types of coal, char and ash from furnaces were used as samples. First, the effect of ammonia injected into the coal combustion process on NO formation was investigated. Then, the NO reduction characteristics of the ammonia injection were investigated as well as the coupling effect of char and ash or certain additives (Fe2O3, Fe3O4, CuO, Cu2O, MnO, etc.) joined together under a reductive atmosphere. The presence of O2 is not conducive to NO reduction by ammonia. The heterogeneous reducing NO efficiencies of the different chars are higher than that of NH3 when reducing NO using the pure gas. Ammonia addition can further strengthen the reaction of char and NO. Coal ash can obviously increase the ability of ammonia to reduce NO. The promotion of the denitrification effects by the various ashes follows the same sequence as the Fe2O3, CaO and MgO contents in the four coal ashes. Fe2O3, Fe3O4 and Cu2O have certain promoting effects on NO reduction with ammonia addition. However, MnO and CuO show negative effects.

Suggested Citation

  • Fan, Weidong & Wu, Xiaofeng & Guo, Hao & Zhu, Jiangtao & Liu, Peng & Chen, Can & Wang, Yong, 2019. "Experimental study on the impact of adding NH3 on NO production in coal combustion and the effects of char, coal ash, and additives on NH3 reducing NO under high temperature," Energy, Elsevier, vol. 173(C), pages 109-120.
  • Handle: RePEc:eee:energy:v:173:y:2019:i:c:p:109-120
    DOI: 10.1016/j.energy.2019.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219302609
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Weidong & Li, Yu & Guo, Qinghong & Chen, Can & Wang, Yong, 2017. "Coal-nitrogen release and NOx evolution in the oxidant-staged combustion of coal," Energy, Elsevier, vol. 125(C), pages 417-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilhelm Jan Tic & Joanna Guziałowska-Tic, 2019. "The Effect of Modifiers and Method of Application on Fine-Coal Combustion," Energies, MDPI, vol. 12(23), pages 1-15, November.
    2. Jiao, Anyao & Zhou, Zining & Yang, Xiuchao & Xu, Hongtao & Liu, Feng & Liao, Xiaowei & Liu, Jiaxun & Jiang, Xiumin, 2023. "The crucial role of oxygen in NO heterogeneous reduction with NH3 at high temperature," Energy, Elsevier, vol. 284(C).
    3. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).
    4. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    2. Engin, Berrin & Kayahan, Ufuk & Atakül, Hüsnü, 2020. "A comparative study on the air, the oxygen-enriched air and the oxy-fuel combustion of lignites in CFB," Energy, Elsevier, vol. 196(C).
    3. Yuan, Zhenhua & Chen, Zhichao & Bian, Liguo & Li, Zhengqi, 2023. "Influence of over-fired air location on gas-particle flow characteristics within a coal-fired industrial boiler under radial air staging," Energy, Elsevier, vol. 283(C).
    4. Kim, Seong-Ju & Park, Sung-Jin & Jo, Sung-Ho & Lee, Hookyung & Yoon, Sang-Jun & Moon, Ji-Hong & Ra, Ho-Won & Yoon, Sung-Min & Lee, Jae-Goo & Mun, Tae-Young, 2023. "Effects of ammonia co-firing ratios and injection positions in the coal–ammonia co-firing process in a circulating fluidized bed combustion test rig," Energy, Elsevier, vol. 282(C).
    5. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    6. Wang, Pengqian & Wang, Chang'an & Yuan, Maobo & Wang, Chaowei & Zhang, Jinping & Du, Yongbo & Tao, Zichen & Che, Defu, 2020. "Experimental evaluation on co-combustion characteristics of semi-coke and coal under enhanced high-temperature and strong-reducing atmosphere," Applied Energy, Elsevier, vol. 260(C).
    7. Liu, Songlin & Fan, Weidong & Guo, Hao & Wu, Xiaofeng & Chen, Jun & Liu, Zhuang & Wang, Xin, 2020. "Relationship between the N2O decomposition and NO formation in H2O/CO2/NH3/NO atmosphere under the conditions of simulated air-staged combustion in the temperature interval of 900–1600 °C," Energy, Elsevier, vol. 211(C).
    8. Miao, Miao & Deng, Boyu & Kong, Hao & Yang, Hairui & Lyu, Junfu & Jiang, Xiaoguo & Zhang, Man, 2021. "Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed," Energy, Elsevier, vol. 220(C).
    9. Yafei Zhang & Rui Luo & Yihua Dou & Qulan Zhou, 2018. "Combustion Characteristics and NO x Emission through a Swirling Burner with Adjustable Flaring Angle," Energies, MDPI, vol. 11(8), pages 1-14, August.
    10. Liu, Songlin & Fan, Weidong & Wang, Xin & Chen, Jun & Guo, Hao, 2022. "Improvement of kinetic parameters and modeling of the N2O chemical reaction in combustion," Energy, Elsevier, vol. 247(C).
    11. Li, Zixiang & Miao, Zhengqing, 2019. "Primary air ratio affects coal utilization mode and NOx emission in lignite pulverized boiler," Energy, Elsevier, vol. 187(C).
    12. Zhang, Hai & Luo, Lei & Liu, Jiaxun & Jiao, Anyao & Liu, Jianguo & Jiang, Xiumin, 2019. "Theoretical study on the reduction reactions from solid char(N): The effect of the nearby group and the high-spin state," Energy, Elsevier, vol. 189(C).
    13. Li, Yukai & Sun, Shaozeng & Feng, Dongdong & Zhang, Wenda & Zhao, Yijun & Qin, Yukun, 2023. "Syngas tempered pulverized coal reburning: Effect of different reaction gas components," Energy, Elsevier, vol. 271(C).
    14. Gu, Mingyan & Wang, Mingming & Chen, Xue & Wang, Jimin & Lin, Yuyu & Chu, Huaqiang, 2019. "Numerical study on the effect of separated over-fire air ratio on combustion characteristics and NOx emission in a 1000 MW supercritical CO2 boiler," Energy, Elsevier, vol. 175(C), pages 593-603.
    15. Yuan, Zhenhua & Chen, Zhichao & Wu, Xiaolan & Zhang, Ning & Bian, Liguo & Qiao, Yanyu & Li, Jiawei & Li, Zhengqi, 2022. "An innovative low-NOx combustion technology for industrial pulverized coal boiler: Gas-particle flow characteristics with different radial-air-staged levels," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:173:y:2019:i:c:p:109-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.