Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2019.01.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
- Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
- Jia, Teng & Dai, Yanjun & Wang, Ruzhu, 2018. "Refining energy sources in winemaking industry by using solar energy as alternatives for fossil fuels: A review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 278-296.
- Wu, Xi & Xu, Shiming & Jiang, Mengnan, 2018. "Development of bubble absorption refrigeration technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3468-3482.
- Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
- Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
- Moreno-Rodríguez, A. & González-Gil, A. & Izquierdo, M. & Garcia-Hernando, N., 2012. "Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications," Energy, Elsevier, vol. 45(1), pages 704-715.
- Zhang, Long & Jiang, Yiqiang & Dong, Jiankai & Yao, Yang, 2018. "Advances in vapor compression air source heat pump system in cold regions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 353-365.
- Hong, D.L. & Chen, G.M. & Tang, L.M. & He, Y.J., 2011. "Simulation research on an EAX (Evaporator-Absorber-Exchange) absorption refrigeration cycle," Energy, Elsevier, vol. 36(1), pages 94-98.
- Zheng, Nan & Song, Weidong & Zhao, Li, 2013. "Theoretical and experimental investigations on the changing regularity of the extreme point of the temperature difference between zeotropic mixtures and heat transfer fluid," Energy, Elsevier, vol. 55(C), pages 541-552.
- Du, S. & Wang, R.Z. & Xia, Z.Z., 2014. "Optimal ammonia water absorption refrigeration cycle with maximum internal heat recovery derived from pinch technology," Energy, Elsevier, vol. 68(C), pages 862-869.
- Sun, Jian & Fu, Lin & Zhang, Shigang, 2012. "A review of working fluids of absorption cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1899-1906.
- Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
- jia, Teng & Huang, Junpeng & Li, Rui & He, Peng & Dai, Yanjun, 2018. "Status and prospect of solar heat for industrial processes in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 475-489.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dou, Pengbo & Jia, Teng & Chu, Peng & Dai, Yanjun & Shou, Chunhui, 2022. "Performance analysis of no-insulation long distance thermal transportation system based on single-stage absorption-resorption cycle," Energy, Elsevier, vol. 243(C).
- Kumar, Anil & Modi, Anish, 2022. "Thermodynamic analysis of novel ejector-assisted vapour absorption-resorption refrigeration systems," Energy, Elsevier, vol. 244(PB).
- Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun & Markides, Christos N., 2024. "Development and performance evaluation of a high solar contribution resorption-compression cascade heat pump for cold climates," Energy, Elsevier, vol. 302(C).
- Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
- Valeria Palomba & Antonino Bonanno & Giovanni Brunaccini & Davide Aloisio & Francesco Sergi & Giuseppe E. Dino & Efstratios Varvaggiannis & Sotirios Karellas & Birgo Nitsch & Andreas Strehlow & André , 2021. "Hybrid Cascade Heat Pump and Thermal-Electric Energy Storage System for Residential Buildings: Experimental Testing and Performance Analysis," Energies, MDPI, vol. 14(9), pages 1-28, April.
- Jia, Teng & Dou, Pengbo & Chen, Erjian & Dai, Yanjun, 2022. "Feasibility and performance analysis of a hybrid GAX-based absorption-compression heat pump system for space heating in extremely cold climate conditions," Energy, Elsevier, vol. 242(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
- Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
- Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun & Markides, Christos N., 2024. "Development and performance evaluation of a high solar contribution resorption-compression cascade heat pump for cold climates," Energy, Elsevier, vol. 302(C).
- Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
- Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Lu, Shixiang & Zhang, Jili & Liang, Ruobing & Zhou, Chao, 2020. "Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night," Renewable Energy, Elsevier, vol. 146(C), pages 2524-2534.
- Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Chen, X. & Wang, R.Z. & Du, S., 2017. "Heat integration of ammonia-water absorption refrigeration system through heat-exchanger network analysis," Energy, Elsevier, vol. 141(C), pages 1585-1599.
- Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
- Chen, X. & Wang, R.Z. & Du, S., 2017. "An improved cycle for large temperature lifts application in water-ammonia absorption system," Energy, Elsevier, vol. 118(C), pages 1361-1369.
- Nick S. Bennett & Brian Lim, 2023. "Assessing the Potential of Heat Pumps to Reduce the Radiator Size on Small Satellites," Energies, MDPI, vol. 16(10), pages 1-11, May.
- Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
- Chen, X. & Wang, R.Z. & Wang, L.W. & Du, S., 2017. "A modified ammonia-water power cycle using a distillation stage for more efficient power generation," Energy, Elsevier, vol. 138(C), pages 1-11.
- Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
- Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
- Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
- Kadam, Sambhaji T. & Gkouletsos, Dimitris & Hassan, Ibrahim & Rahman, Mohammad Azizur & Kyriakides, Alexios-Spyridon & Papadopoulos, Athanasios I. & Seferlis, Panos, 2020. "Investigation of binary, ternary and quaternary mixtures across solution heat exchanger used in absorption refrigeration and process modifications to improve cycle performance," Energy, Elsevier, vol. 198(C).
- Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
- Xuan Tao & Dhinesh Thanganadar & Kumar Patchigolla, 2022. "Compact Ammonia/Water Absorption Chiller of Different Cycle Configurations: Parametric Analysis Based on Heat Transfer Performance," Energies, MDPI, vol. 15(18), pages 1-28, September.
More about this item
Keywords
Ammonia-water; Balanced-type absorption-resorption; Heat pump; Solar thermal; Residential heating;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:171:y:2019:i:c:p:120-134. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.