IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v170y2019icp744-751.html
   My bibliography  Save this article

Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence

Author

Listed:
  • Ruan, Can
  • Yu, Tao
  • Chen, Feier
  • Wang, Sixu
  • Cai, Weiwei
  • Lu, Xingcai

Abstract

An experimental study was conducted based on the recently available computed tomography of chemiluminescence (CTC) technique with a swirl-stabilized gas turbine model combustor to obtain both time-resolved and three-dimensional (3D) dynamics of the turbulent flame in confined situation. The CTC system employed in the present study was designed in a cost-effective, but highly-efficient manner, which allows simultaneous recordings of six projections of the target flame with three cameras at a repetition rate of 1 kHz. Instantaneous flame topologies were successfully captured and highly-transient flame dynamics in the combustion chamber, such as local extinction and flame shape variations were also observed. A further analysis based on the instantaneous and phase-averaged 3D movements of the flame centroids suggested that the flame in the present combustor exhibited a helical but relatively stochastic propagation and a distinct azimuthal rotation around the combustor, which is in the direction of rotation imposed by the swirler to the flow. Results obtained in this work demonstrate the capability of the CTC technique to resolve the detailed spatiotemporal dynamics of turbulent flames in confined combustion systems, which is expected to be particularly helpful for the study of combustion instabilities, such as periodic combustion oscillations in fuel-lean gas turbine engines.

Suggested Citation

  • Ruan, Can & Yu, Tao & Chen, Feier & Wang, Sixu & Cai, Weiwei & Lu, Xingcai, 2019. "Experimental characterization of the spatiotemporal dynamics of a turbulent flame in a gas turbine model combustor using computed tomography of chemiluminescence," Energy, Elsevier, vol. 170(C), pages 744-751.
  • Handle: RePEc:eee:energy:v:170:y:2019:i:c:p:744-751
    DOI: 10.1016/j.energy.2018.12.215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218325957
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.12.215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xuan & Duan, Fei & Lim, Seng Chuan & Yip, Mee Sin, 2013. "NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions," Energy, Elsevier, vol. 59(C), pages 559-569.
    2. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    3. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Wenkai & Liu, Li & Hu, Qiming & Liu, Guichuang & Wang, Jiwei & Zhang, Ning & Wu, Shaohua & Qiu, Penghua & Song, Shaowei, 2021. "Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions," Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    2. Xiurui Guo & Chunxiao Ning & Yaqian Shen & Chang Yao & Dongsheng Chen & Shuiyuan Cheng, 2023. "Projection of the Co-Reduced Emissions of CO 2 and Air Pollutants from Civil Aviation in China," Sustainability, MDPI, vol. 15(9), pages 1-23, April.
    3. Choi, Sun & Lee, Seungro & Kwon, Oh Chae, 2015. "Extinction limits and structure of counterflow nonpremixed hydrogen-doped ammonia/air flames at elevated temperatures," Energy, Elsevier, vol. 85(C), pages 503-510.
    4. Liu, Xiao & Zhou, Dequn & Zhou, Peng & Wang, Qunwei, 2017. "What drives CO2 emissions from China’s civil aviation? An exploration using a new generalized PDA method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 30-45.
    5. Aygun, Hakan & Turan, Onder, 2021. "Exergo-economic analysis of off-design a target drone engine for reconnaissance mission flight," Energy, Elsevier, vol. 224(C).
    6. Atilgan, Ramazan & Onder Turan,, 2020. "Economy and exergy of aircraft turboprop engine at dynamic loads," Energy, Elsevier, vol. 213(C).
    7. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    8. Siddiqui, O. & Dincer, I., 2021. "A comparative life cycle assessment of clean aviation fuels," Energy, Elsevier, vol. 234(C).
    9. Chi, Hongtao & Pedrielli, Giulia & Ng, Szu Hui & Kister, Thomas & Bressan, Stéphane, 2018. "A framework for real-time monitoring of energy efficiency of marine vessels," Energy, Elsevier, vol. 145(C), pages 246-260.
    10. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    11. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    12. He, Yizhuo & Zou, Chun & Song, Yu & Liu, Yang & Zheng, Chuguang, 2016. "Numerical study of characteristics on NO formation in methane MILD combustion with simultaneously hot and diluted oxidant and fuel (HDO/HDF)," Energy, Elsevier, vol. 112(C), pages 1024-1035.
    13. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    14. Qiu, Rui & Hou, Shuhua & Meng, Zhiyi, 2021. "Low carbon air transport development trends and policy implications based on a scientometrics-based data analysis system," Transport Policy, Elsevier, vol. 107(C), pages 1-10.
    15. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    16. Li, DuoQi & Wang, DuanYi, 2016. "Decomposition analysis of energy consumption for an freeway during its operation period: A case study for Guangdong, China," Energy, Elsevier, vol. 97(C), pages 296-305.
    17. De Giorgi, Maria Grazia & Ficarella, Antonio & Sciolti, Aldebara & Pescini, Elisa & Campilongo, Stefano & Di Lecce, Giorgio, 2017. "Improvement of lean flame stability of inverse methane/air diffusion flame by using coaxial dielectric plasma discharge actuators," Energy, Elsevier, vol. 126(C), pages 689-706.
    18. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    19. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    20. Zhao, Hao & Dana, Alon G. & Zhang, Zunhua & Green, William H. & Ju, Yiguang, 2018. "Experimental and modeling study of the mutual oxidation of N-pentane and nitrogen dioxide at low and high temperatures in a jet stirred reactor," Energy, Elsevier, vol. 165(PB), pages 727-738.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:170:y:2019:i:c:p:744-751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.