IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipbp21-32.html
   My bibliography  Save this article

Learning rates and cost reduction potential of indirect coal-to-liquid technology coupled with CO2 capture

Author

Listed:
  • Zhou, Li
  • Duan, Maosheng
  • Yu, Yadong
  • Zhang, Xiliang

Abstract

Coal-to-liquids (CTL) and CO2 capture and storage (CCS) have attracted increasing attention in energy supply systems, but few empirical studies and industrial data are available regarding the learning rates and future cost curves. In this study, methods and equations for estimating the learning rates of indirect CTL technology coupled CO2 capture (CC) were introduced. Thermal efficiency was considered as the system efficiency and CO2 emission were obtained from Aspen Plus simulation. Economic parameters were estimated using a cost estimation model. The results showed that when the cumulative production of oil reaches 100 million tons, the oil cost for FT with CC may decrease by 5.9%–21.2%, whereas that for FT without CC may decrease by 6.3%–22.4%. CO2 emission reduction costs may decrease by approximately 8.9%–32.3%. FT with CC technology may not be economical compared with FT without CC for some time. The price of CO2 emissions in national ETS might be not enough to stimulate companies to adopt CCS. We also discussed the effects of the technological maturity and the overall performance improvements. Improvement of technological R&D was needed in some key technologies such as coal gasification and FT synthesis, as well as industrial demonstrations.

Suggested Citation

  • Zhou, Li & Duan, Maosheng & Yu, Yadong & Zhang, Xiliang, 2018. "Learning rates and cost reduction potential of indirect coal-to-liquid technology coupled with CO2 capture," Energy, Elsevier, vol. 165(PB), pages 21-32.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:21-32
    DOI: 10.1016/j.energy.2018.09.150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218319200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
    2. Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
    3. Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
    4. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    5. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
    6. Henry Chen, Y.-H. & Reilly, John M. & Paltsev, Sergey, 2011. "The prospects for coal-to-liquid conversion: A general equilibrium analysis," Energy Policy, Elsevier, vol. 39(9), pages 4713-4725, September.
    7. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    8. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    9. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
    10. Newbery, David, 2018. "Evaluating the case for supporting renewable electricity," Energy Policy, Elsevier, vol. 120(C), pages 684-696.
    11. Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
    12. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    13. Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
    14. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    15. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    16. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
    17. Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
    3. Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
    4. Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    2. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    3. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    4. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    5. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
    7. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    9. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    10. Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
    11. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
    12. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
    13. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
    14. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    15. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    16. Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
    17. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    18. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    19. Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
    20. Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:21-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.