Learning rates and cost reduction potential of indirect coal-to-liquid technology coupled with CO2 capture
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.09.150
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
- Ruffini, Eleonora & Wei, Max, 2018. "Future costs of fuel cell electric vehicles in California using a learning rate approach," Energy, Elsevier, vol. 150(C), pages 329-341.
- Rubin, Edward S. & Yeh, Sonia & Antes, Matt & Berkenpas, Michael & Davison, John, 2007. "Use of experience curves to estimate the future cost of power plants with CO2 capture," Institute of Transportation Studies, Working Paper Series qt46x6h0n0, Institute of Transportation Studies, UC Davis.
- Hettinga, W.G. & Junginger, H.M. & Dekker, S.C. & Hoogwijk, M. & McAloon, A.J. & Hicks, K.B., 2009. "Understanding the reductions in US corn ethanol production costs: An experience curve approach," Energy Policy, Elsevier, vol. 37(1), pages 190-203, January.
- Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
- Junginger, Martin & de Visser, Erika & Hjort-Gregersen, Kurt & Koornneef, Joris & Raven, Rob & Faaij, Andre & Turkenburg, Wim, 2006. "Technological learning in bioenergy systems," Energy Policy, Elsevier, vol. 34(18), pages 4024-4041, December.
- Newbery, David, 2018.
"Evaluating the case for supporting renewable electricity,"
Energy Policy, Elsevier, vol. 120(C), pages 684-696.
- Newbery, David, 2018. "Evaluating the case for supporting renewable electricity," CEPR Discussion Papers 12700, C.E.P.R. Discussion Papers.
- Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
- Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
- Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
- Henry Chen, Y.-H. & Reilly, John M. & Paltsev, Sergey, 2011. "The prospects for coal-to-liquid conversion: A general equilibrium analysis," Energy Policy, Elsevier, vol. 39(9), pages 4713-4725, September.
- Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
- Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
- Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
- Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
- Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
- Nakata, Toshihiko & Sato, Takemi & Wang, Hao & Kusunoki, Tomoya & Furubayashi, Takaaki, 2011. "Modeling technological learning and its application for clean coal technologies in Japan," Applied Energy, Elsevier, vol. 88(1), pages 330-336, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ding, Bingqing & Makowski, Marek & Nahorski, Zbigniew & Ren, Hongtao & Ma, Tieju, 2022. "Optimizing the technology pathway of China's liquid fuel production considering uncertain oil prices: A robust programming model," Energy Economics, Elsevier, vol. 115(C).
- Zhao, Jinyang & Yu, Yadong & Ren, Hongtao & Makowski, Marek & Granat, Janusz & Nahorski, Zbigniew & Ma, Tieju, 2022. "How the power-to-liquid technology can contribute to reaching carbon neutrality of the China's transportation sector?," Energy, Elsevier, vol. 261(PA).
- Kim, Hansung & Lee, Hwarang & Koo, Yoonmo & Choi, Dong Gu, 2020. "Comparative analysis of iterative approaches for incorporating learning-by-doing into the energy system models," Energy, Elsevier, vol. 197(C).
- Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
- Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
- Yang, Lin & Lv, Haodong & Wei, Ning & Li, Yiming & Zhang, Xian, 2023. "Dynamic optimization of carbon capture technology deployment targeting carbon neutrality, cost efficiency and water stress: Evidence from China's electric power sector," Energy Economics, Elsevier, vol. 125(C).
- Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
- Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
- Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
- Rochedo, Pedro R.R. & Szklo, Alexandre, 2013. "Designing learning curves for carbon capture based on chemical absorption according to the minimum work of separation," Applied Energy, Elsevier, vol. 108(C), pages 383-391.
- Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2022. "Roles of diffusion patterns, technological progress, and environmental benefits in determining optimal renewable subsidies in the US," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
- Li, Sheng & Gao, Lin & Zhang, Xiaosong & Lin, Hu & Jin, Hongguang, 2012. "Evaluation of cost reduction potential for a coal based polygeneration system with CO2 capture," Energy, Elsevier, vol. 45(1), pages 101-106.
- Xu, Zhongming & Fang, Chenhao & Ma, Tieju, 2020. "Analysis of China’s olefin industry using a system optimization model considering technological learning and energy consumption reduction," Energy, Elsevier, vol. 191(C).
More about this item
Keywords
Carbon capture and storage; Coal to liquid; Cost curve; Learning rate; ETS;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:21-32. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.