IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v165y2018ipap75-92.html
   My bibliography  Save this article

1-D model for finding geometry of a single phase ejector

Author

Listed:
  • Kumar, Vikas
  • Sachdeva, Gulshan

Abstract

This paper presents a novel 1-D mathematical model to determine complete dimensions of an ejector component of Ejector Refrigeration System (ERS). The concepts of Prandtl's mixing length, Prandtl-Meyer expansion wave, Kelvin-Helmholtz instability and Baroclinic effect are introduced in the model to precisely determine the various diameters, mixing length, nozzle exit position etc. for the given conditions of the primary & secondary fluid, cooling capacity and critical condenser pressure. The area ratios obtained using the mathematical model are compared with the experimental/numerical results available in open literature for the same operating conditions and are found to be in good agreement. Moreover, ejector geometry determined from the proposed model is analyzed using CFD for the same input conditions. Average deviation in the entrainment ratio obtained using CFD and that given to the model is found to be less than 2.48% and thus model is validated again. The experimental test rig of ejector refrigeration system is also fabricated and the performance is evaluated while operating at critical condenser pressure. The deviation in the ejector geometry used in the experiment is found to be less than 7% in comparison to the ejector dimensions calculated by the numerical model for the same input conditions.

Suggested Citation

  • Kumar, Vikas & Sachdeva, Gulshan, 2018. "1-D model for finding geometry of a single phase ejector," Energy, Elsevier, vol. 165(PA), pages 75-92.
  • Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:75-92
    DOI: 10.1016/j.energy.2018.09.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218318358
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.09.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    2. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Braimakis, Konstantinos, 2021. "Solar ejector cooling systems: A review," Renewable Energy, Elsevier, vol. 164(C), pages 566-602.
    2. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    3. Chen, Hongjie & Zhu, Jiahua & Ge, Jing & Lu, Wei & Zheng, Lixing, 2020. "A cylindrical mixing chamber ejector analysis model to predict the optimal nozzle exit position," Energy, Elsevier, vol. 208(C).
    4. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    5. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    6. Ll Macia & R. Castilla & P. J. Gamez-Montero & S. Camacho & E. Codina, 2019. "Numerical Simulation of a Supersonic Ejector for Vacuum Generation with Explicit and Implicit Solver in Openfoam," Energies, MDPI, vol. 12(18), pages 1-17, September.
    7. Ge, Jing & Chen, Hongjie & Jin, Yang & Li, Jun, 2023. "Conical-cylindrical mixer ejector design model for predicting optimal nozzle exit position," Energy, Elsevier, vol. 283(C).
    8. Zhou, Yifan & Chen, Guangming & Hao, Xinyue & Gao, Neng & Volovyk, Oleksii, 2023. "Working mechanism and characteristics analysis of a novel configuration of a supersonic ejector," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    3. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "Pressure recovery ratio in a variable cooling loads ejector-based multi-evaporator refrigeration system," Energy, Elsevier, vol. 44(1), pages 649-656.
    4. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    5. Sumeru, K. & Nasution, H. & Ani, F.N., 2012. "A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4927-4937.
    6. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    7. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    8. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    9. Mohamed, Saleh & Shatilla, Youssef & Zhang, TieJun, 2019. "CFD-based design and simulation of hydrocarbon ejector for cooling," Energy, Elsevier, vol. 167(C), pages 346-358.
    10. Sarkar, Jahar, 2012. "Ejector enhanced vapor compression refrigeration and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6647-6659.
    11. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    12. Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
    13. Zhou, Shenghui & He, Yang & Chen, Haisheng & Xu, Yujie & Deng, Jianqiang, 2020. "Performance analysis of a novel adiabatic compressed air energy system with ejectors enhanced charging process," Energy, Elsevier, vol. 205(C).
    14. Lin, Chen & Cai, Wenjian & Li, Yanzhong & Yan, Jia & Hu, Yu, 2012. "The characteristics of pressure recovery in an adjustable ejector multi-evaporator refrigeration system," Energy, Elsevier, vol. 46(1), pages 148-155.
    15. Chong, Daotong & Hu, Mengqi & Chen, Weixiong & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2014. "Experimental and numerical analysis of supersonic air ejector," Applied Energy, Elsevier, vol. 130(C), pages 679-684.
    16. Chen, Xiangjie & Worall, Mark & Omer, Siddig & Su, Yuehong & Riffat, Saffa, 2013. "Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle," Applied Energy, Elsevier, vol. 102(C), pages 931-942.
    17. Fatong Jia & Dazhang Yang & Jing Xie, 2021. "Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters," Energies, MDPI, vol. 14(21), pages 1-16, October.
    18. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    19. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    20. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:75-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.