IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5835-d441852.html
   My bibliography  Save this article

Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System

Author

Listed:
  • Hafiz Ali Muhammad

    (Thermal Energy Systems Laboratory, Korea Institute of Energy Research, Daejeon 305-343, Korea
    Both the authors contributed equally to this work.)

  • Hafiz Muhammad Abdullah

    (Wah Engineering College, University of Wah, Wah Cantt, Punjab 47040, Pakistan
    Both the authors contributed equally to this work.)

  • Zabdur Rehman

    (Department of Mechanical Engineering, Air University Islamabad, Aerospace and Aviation Campus Kamra, Kamra 43570, Pakistan)

  • Beomjoon Lee

    (Thermal Energy Systems Laboratory, Korea Institute of Energy Research, Daejeon 305-343, Korea)

  • Young-Jin Baik

    (Thermal Energy Systems Laboratory, Korea Institute of Energy Research, Daejeon 305-343, Korea)

  • Jongjae Cho

    (Thermal Energy Systems Laboratory, Korea Institute of Energy Research, Daejeon 305-343, Korea)

  • Muhammad Imran

    (Mechanical Engineering and Design, School of Engineering and Applied Sciences, Aston University, Birmingham B4 7ET, UK)

  • Manzar Masud

    (Department of Mechanical Engineering, Capital University of Science and Technology, Islamabad 44000, Pakistan)

  • Mohsin Saleem

    (School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

  • Muhammad Shoaib Butt

    (School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Sector H-12, Islamabad 44000, Pakistan)

Abstract

An ejector is a simple mechanical device that can be integrated with power generation or the refrigeration cycle to enhance their performance. Owing to the complex flow behavior in the ejector, the performance prediction of the ejector is done by numerical simulations. However, to evaluate the performance of an ejector integrated power cycle or refrigeration cycle, the need for simpler and more reliable thermodynamic models to estimate the performance of the ejector persists. This research, therefore, aims at developing a single mathematical correlation that can predict the ejector performance with reasonable accuracy. The proposed correlation relates the entrainment ratio and the pressure rise across the ejector to the area ratio and the mass flow rate of the primary flow. R141b is selected as the ejector refrigerant, and the results obtained through the proposed correlation are validated through numerical solutions. The comparison between the analytical and numerical with experimental results provided an error of less than 8.4% and 4.29%, respectively.

Suggested Citation

  • Hafiz Ali Muhammad & Hafiz Muhammad Abdullah & Zabdur Rehman & Beomjoon Lee & Young-Jin Baik & Jongjae Cho & Muhammad Imran & Manzar Masud & Mohsin Saleem & Muhammad Shoaib Butt, 2020. "Numerical Modeling of Ejector and Development of Improved Methods for the Design of Ejector-Assisted Refrigeration System," Energies, MDPI, vol. 13(21), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5835-:d:441852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed, Saleh & Shatilla, Youssef & Zhang, TieJun, 2019. "CFD-based design and simulation of hydrocarbon ejector for cooling," Energy, Elsevier, vol. 167(C), pages 346-358.
    2. Chunnanond, Kanjanapon & Aphornratana, Satha, 2004. "Ejectors: applications in refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(2), pages 129-155, April.
    3. Han, Yu & Wang, Xiaodong & Sun, Hao & Zhang, Guangli & Guo, Lixin & Tu, Jiyuan, 2019. "CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance," Energy, Elsevier, vol. 167(C), pages 469-483.
    4. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    5. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    6. Chen, Jianyong & Jarall, Sad & Havtun, Hans & Palm, Björn, 2015. "A review on versatile ejector applications in refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 67-90.
    7. He, S. & Li, Y. & Wang, R.Z., 2009. "Progress of mathematical modeling on ejectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1760-1780, October.
    8. Xia, Jiaxi & Wang, Jiangfeng & Zhou, Kehan & Zhao, Pan & Dai, Yiping, 2018. "Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source," Energy, Elsevier, vol. 161(C), pages 337-351.
    9. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahid Riaz & Fu Zhi Yam & Muhammad Abdul Qyyum & Muhammad Wakil Shahzad & Muhammad Farooq & Poh Seng Lee & Moonyong Lee, 2021. "Direct Analytical Modeling for Optimal, On-Design Performance of Ejector for Simulating Heat-Driven Systems," Energies, MDPI, vol. 14(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    2. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.
    3. Yu, Binbin & Yang, Jingye & Wang, Dandong & Shi, Junye & Chen, Jiangping, 2019. "An updated review of recent advances on modified technologies in transcritical CO2 refrigeration cycle," Energy, Elsevier, vol. 189(C).
    4. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    5. Karthick, S.K. & Rao, Srisha M.V. & Jagadeesh, G. & Reddy, K.P.J., 2018. "Experimental parametric studies on the performance and mixing characteristics of a low area ratio rectangular supersonic gaseous ejector by varying the secondary flow rate," Energy, Elsevier, vol. 161(C), pages 832-845.
    6. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    7. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    8. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    9. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    10. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).
    11. Yilmaz, Tuncay & Erdinç, Mehmet Tahir, 2019. "Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants," Energy, Elsevier, vol. 168(C), pages 712-727.
    12. Hamza K. Mukhtar & Saud Ghani, 2021. "Hybrid Ejector-Absorption Refrigeration Systems: A Review," Energies, MDPI, vol. 14(20), pages 1-31, October.
    13. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    14. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    15. Hu, Bin & Wu, Di & Wang, R.Z., 2018. "Water vapor compression and its various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 92-107.
    16. Khennich, Mohammed & Galanis, Nicolas & Sorin, Mikhail, 2016. "Effects of design conditions and irreversibilities on the dimensions of ejectors in refrigeration systems," Applied Energy, Elsevier, vol. 179(C), pages 1020-1031.
    17. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    18. Zhao, Hongxia & Yuan, Tianpeng & Gao, Jia & Wang, Xinli & Yan, Jia, 2019. "Conventional and advanced exergy analysis of parallel and series compression-ejection hybrid refrigeration system for a household refrigerator with R290," Energy, Elsevier, vol. 166(C), pages 845-861.
    19. Fatong Jia & Dazhang Yang & Jing Xie, 2021. "Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters," Energies, MDPI, vol. 14(21), pages 1-16, October.
    20. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5835-:d:441852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.