IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v86y2009i6p915-921.html
   My bibliography  Save this article

Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm

Author

Listed:
  • Subbaraj, P.
  • Rengaraj, R.
  • Salivahanan, S.

Abstract

In this paper, a self adaptive real-coded genetic algorithm (SARGA) is implemented to solve the combined heat and power economic dispatch (CHPED) problem. The self adaptation is achieved by means of tournament selection along with simulated binary crossover (SBX). The selection process has a powerful exploration capability by creating tournaments between two solutions. The better solution is chosen and placed in the mating pool leading to better convergence and reduced computational burden. The SARGA integrates penalty parameterless constraint handling strategy and simultaneously handles equality and inequality constraints. The population diversity is introduced by making use of distribution index in SBX operator to create a better offspring. This leads to a high diversity in population which can increase the probability towards the global optimum and prevent premature convergence. The SARGA is applied to solve CHPED problem with bounded feasible operating region which has large number of local minima. The numerical results demonstrate that the proposed method can find a solution towards the global optimum and compares favourably with other recent methods in terms of solution quality, handling constraints and computation time.

Suggested Citation

  • Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
  • Handle: RePEc:eee:appene:v:86:y:2009:i:6:p:915-921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(08)00252-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rong, Aiying & Lahdelma, Risto, 2007. "An efficient envelope-based Branch and Bound algorithm for non-convex combined heat and power production planning," European Journal of Operational Research, Elsevier, vol. 183(1), pages 412-431, November.
    2. Makkonen, Simo & Lahdelma, Risto, 2006. "Non-convex power plant modelling in energy optimisation," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1113-1126, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong, Aiying & Lahdelma, Risto, 2017. "An efficient model and algorithm for the transmission-constrained multi-site combined heat and power system," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1106-1117.
    2. Zhou, Tianmin & Chen, Jiamin & Xu, Xuancong & Ou, Zuhong & Yin, Hao & Luo, Jianqiang & Meng, Anbo, 2023. "A novel multi-agent based crisscross algorithm with hybrid neighboring topology for combined heat and power economic dispatch," Applied Energy, Elsevier, vol. 342(C).
    3. Giuseppe Pinto & Elnaz Abdollahi & Alfonso Capozzoli & Laura Savoldi & Risto Lahdelma, 2019. "Optimization and Multicriteria Evaluation of Carbon-neutral Technologies for District Heating," Energies, MDPI, vol. 12(9), pages 1-19, April.
    4. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    5. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    6. Zou, Dexuan & Li, Steven & Kong, Xiangyong & Ouyang, Haibin & Li, Zongyan, 2019. "Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy," Applied Energy, Elsevier, vol. 237(C), pages 646-670.
    7. Abdollahi, Elnaz & Wang, Haichao & Lahdelma, Risto, 2016. "An optimization method for multi-area combined heat and power production with power transmission network," Applied Energy, Elsevier, vol. 168(C), pages 248-256.
    8. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    9. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Catalão, João P.S., 2017. "New framework for optimal scheduling of combined heat and power with electric and thermal storage systems considering industrial customers inter-zonal power exchanges," Energy, Elsevier, vol. 138(C), pages 1006-1015.
    10. Rong, Aiying & Hakonen, Henri & Lahdelma, Risto, 2008. "A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 190(3), pages 741-755, November.
    11. Rong, Aiying & Figueira, José Rui & Lahdelma, Risto, 2015. "A two phase approach for the bi-objective non-convex combined heat and power production planning problem," European Journal of Operational Research, Elsevier, vol. 245(1), pages 296-308.
    12. Rong, Aiying & Lahdelma, Risto, 2016. "Role of polygeneration in sustainable energy system development challenges and opportunities from optimization viewpoints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 363-372.
    13. Shang, Ce & Srinivasan, Dipti & Reindl, Thomas, 2017. "Generation and storage scheduling of combined heat and power," Energy, Elsevier, vol. 124(C), pages 693-705.
    14. Rizk-Allah, Rizk M. & Hassanien, Aboul Ella & Snášel, Václav, 2022. "A hybrid chameleon swarm algorithm with superiority of feasible solutions for optimal combined heat and power economic dispatch problem," Energy, Elsevier, vol. 254(PC).
    15. Ahmed Ginidi & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ragab El-Sehiemy, 2021. "An Innovative Hybrid Heap-Based and Jellyfish Search Algorithm for Combined Heat and Power Economic Dispatch in Electrical Grids," Mathematics, MDPI, vol. 9(17), pages 1-25, August.
    16. Paramjeet Kaur & Krishna Teerth Chaturvedi & Mohan Lal Kolhe, 2023. "Combined Heat and Power Economic Dispatching within Energy Network using Hybrid Metaheuristic Technique," Energies, MDPI, vol. 16(3), pages 1-17, January.
    17. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    18. Emili GRIFELL‐TATJÉ & Kristiaan KERSTENS, 2008. "Incentive Regulation And The Role Of Convexity In Benchmarking Electricity Distribution: Economists Versus Engineers," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 79(2), pages 227-248, June.
    19. Bischi, Aldo & Taccari, Leonardo & Martelli, Emanuele & Amaldi, Edoardo & Manzolini, Giampaolo & Silva, Paolo & Campanari, Stefano & Macchi, Ennio, 2014. "A detailed MILP optimization model for combined cooling, heat and power system operation planning," Energy, Elsevier, vol. 74(C), pages 12-26.
    20. Marquant, Julien F. & Evins, Ralph & Bollinger, L. Andrew & Carmeliet, Jan, 2017. "A holarchic approach for multi-scale distributed energy system optimisation," Applied Energy, Elsevier, vol. 208(C), pages 935-953.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:86:y:2009:i:6:p:915-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.