IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v163y2018icp682-698.html
   My bibliography  Save this article

Numerical investigation of heat transfer in a CO2 two-phase ejector

Author

Listed:
  • Haida, Michal
  • Smolka, Jacek
  • Hafner, Armin
  • Mastrowski, Mikolaj
  • Palacz, Michał
  • Madsen, Kenneth B.
  • Nowak, Andrzej J.
  • Banasiak, Krzysztof

Abstract

In this paper, the influence of heat transfer in the walls of an R744 two-phase ejector on ejector performance was investigated. A numerical investigation was performed using a computational fluid dynamic (CFD) model of the R744 two-phase flow coupled with the heat transfer inside the ejector. An ejector equipped with thermocouple channels was designed and manufactured to investigate temperature distribution in the inner walls under boundary conditions typical for a refrigeration and air-conditioning application in a supermarket. The ejector was installed on the test rig to perform a test series that evaluated the outer walls of the ejector with and without insulation. The experimental results were used to validate the proposed CFD model, and a numerical investigation was performed to analyse the influence of heat transfer on ejector performance. The motive nozzle and suction nozzle mass flow rates accuracies were within ±7% and ±15%, respectively. In addition, the proposed CFD model predicted the wall temperatures with ±5 K accuracy for most of the validated points. The heat transfer coefficient of the R744 two-phase flow inside the ejector is presented. The non-adiabatic inner walls degraded ejector performance. The maximum reduction of the mass entrainment ratio reached approximately 13%.

Suggested Citation

  • Haida, Michal & Smolka, Jacek & Hafner, Armin & Mastrowski, Mikolaj & Palacz, Michał & Madsen, Kenneth B. & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Numerical investigation of heat transfer in a CO2 two-phase ejector," Energy, Elsevier, vol. 163(C), pages 682-698.
  • Handle: RePEc:eee:energy:v:163:y:2018:i:c:p:682-698
    DOI: 10.1016/j.energy.2018.08.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218317110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.08.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    2. Haida, Michal & Smolka, Jacek & Hafner, Armin & Ostrowski, Ziemowit & Palacz, Michał & Madsen, Kenneth B. & Försterling, Sven & Nowak, Andrzej J. & Banasiak, Krzysztof, 2018. "Performance mapping of the R744 ejectors for refrigeration and air conditioning supermarket application: A hybrid reduced-order model," Energy, Elsevier, vol. 153(C), pages 933-948.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mastrowski, Mikolaj & Smolka, Jacek & Hafner, Armin & Haida, Michal & Palacz, Michal & Banasiak, Krzysztof, 2019. "Experimental study of the heat transfer problem in expansion devices in CO2 refrigeration systems," Energy, Elsevier, vol. 173(C), pages 586-597.
    2. Li, Yafei & Deng, Jianqiang, 2022. "Numerical investigation on the performance of transcritical CO2 two-phase ejector with a novel non-equilibrium CFD model," Energy, Elsevier, vol. 238(PC).
    3. Lin, Zi & Liu, Xiaolei & Lao, Liyun & Liu, Hengxu, 2020. "Prediction of two-phase flow patterns in upward inclined pipes via deep learning," Energy, Elsevier, vol. 210(C).
    4. Besagni, Giorgio, 2019. "Ejectors on the cutting edge: The past, the present and the perspective," Energy, Elsevier, vol. 170(C), pages 998-1003.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    2. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    3. Lixing Zheng & Hongwei Hu & Weibo Wang & Yiyan Zhang & Lingmei Wang, 2022. "Study on Flow Distribution and Structure Optimization in a Mix Chamber and Diffuser of a CO 2 Two-Phase Ejector," Mathematics, MDPI, vol. 10(5), pages 1-16, February.
    4. Chen, Guangming & Ierin, Volodymyr & Volovyk, Oleksii & Shestopalov, Kostyantyn, 2019. "An improved cascade mechanical compression–ejector cooling cycle," Energy, Elsevier, vol. 170(C), pages 459-470.
    5. Bi, Rongshan & Chen, Chen & Li, Jiansong & Tan, Xinshun & Xiang, Shuguang, 2018. "Research on the CFD numerical simulation of flash boiling atomization," Energy, Elsevier, vol. 165(PA), pages 768-781.
    6. Ramesh, A.S. & Sekhar, S. Joseph, 2018. "Experimental and numerical investigations on the effect of suction chamber angle and nozzle exit position of a steam-jet ejector," Energy, Elsevier, vol. 164(C), pages 1097-1113.
    7. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    8. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2017. "Investigation of the use of nano-refrigerants to enhance the performance of an ejector refrigeration system," Applied Energy, Elsevier, vol. 206(C), pages 1446-1463.
    9. Sierra-Pallares, José & García del Valle, Javier & Paniagua, Jorge Muñoz & García, Javier & Méndez-Bueno, César & Castro, Francisco, 2018. "Shape optimization of a long-tapered R134a ejector mixing chamber," Energy, Elsevier, vol. 165(PA), pages 422-438.
    10. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    11. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    12. Wang, Jiong & Xu, Shuangjie & Cheng, Huaiyu & Ji, Bin & Zhang, Junqiang & Long, Xinping, 2018. "Experimental investigation of cavity length pulsation characteristics of jet pumps during limited operation stage," Energy, Elsevier, vol. 163(C), pages 61-73.
    13. Lamberts, Olivier & Chatelain, Philippe & Bourgeois, Nicolas & Bartosiewicz, Yann, 2018. "The compound-choking theory as an explanation of the entrainment limitation in supersonic ejectors," Energy, Elsevier, vol. 158(C), pages 524-536.
    14. Yosaf, Salem & Ozcan, Hasan, 2018. "Exergoeconomic investigation of flue gas driven ejector absorption power system integrated with PEM electrolyser for hydrogen generation," Energy, Elsevier, vol. 163(C), pages 88-99.
    15. Ahmed Elatar & Brian Fricke & Vishaldeep Sharma & Kashif Nawaz, 2021. "Pressure Exchanger for Energy Recovery in a Trans-Critical CO 2 Refrigeration System," Energies, MDPI, vol. 14(6), pages 1-15, March.
    16. Sun, Fangtian & Chen, Xu & Fu, Lin & Zhang, Shigang, 2018. "Configuration optimization of an enhanced ejector heat exchanger based on an ejector refrigerator and a plate heat exchanger," Energy, Elsevier, vol. 164(C), pages 408-417.
    17. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).
    18. Taleghani, S. Taslimi & Sorin, M. & Gaboury, S., 2021. "Thermo-economic analysis of heat-driven ejector system for cooling smelting process exhaust gas," Energy, Elsevier, vol. 220(C).
    19. Luca Viscito & Gianluca Lillo & Giovanni Napoli & Alfonso William Mauro, 2021. "Waste Heat Driven Multi-Ejector Cooling Systems: Optimization of Design at Partial Load; Seasonal Performance and Cost Evaluation," Energies, MDPI, vol. 14(18), pages 1-25, September.
    20. Metsue, Antoine & Debroeyer, Romain & Poncet, Sébastien & Bartosiewicz, Yann, 2022. "An improved thermodynamic model for supersonic real-gas ejectors using the compound-choking theory," Energy, Elsevier, vol. 238(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:682-698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.