Influence of laser irradiation on rumen fluid for biogas production from dairy manure
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.08.118
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yue, Zheng-Bo & Wang, Jin & Liu, Xiao-Meng & Yu, Han-Qing, 2012. "Comparison of rumen microorganism and digester sludge dominated anaerobic digestion processes for aquatic plants," Renewable Energy, Elsevier, vol. 46(C), pages 255-258.
- Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2017. "Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure," Energy, Elsevier, vol. 120(C), pages 842-853.
- Abdelsalam, E. & Samer, M. & Attia, Y.A. & Abdel-Hadi, M.A. & Hassan, H.E. & Badr, Y., 2016. "Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry," Renewable Energy, Elsevier, vol. 87(P1), pages 592-598.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdelsalam, E. & Hijazi, O. & Samer, M. & Yacoub, I.H. & Ali, A.S. & Ahmed, R.H. & Bernhardt, H., 2019. "Life cycle assessment of the use of laser radiation in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 142(C), pages 130-136.
- Essam M. Abdelsalam & Mohamed Samer & Mariam A. Amer & Baher M. A. Amer, 2021. "Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8746-8757, June.
- Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
- M. Samer & E. M. Abdelsalam & S. Mohamed & H. Elsayed & Y. Attia, 2022. "Impact of photoactivated cobalt oxide nanoparticles addition on manure and whey for biogas production through dry anaerobic co-digestion," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 7776-7793, June.
- M. Samer & O. Hijazi & E. M. Abdelsalam & A. El-Hussein & Y. A. Attia & I. H. Yacoub & H. Bernhardt, 2021. "Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14683-14696, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
- Aguilar-Moreno, Guadalupe Stefanny & Navarro-Cerón, Elizabeth & Velázquez-Hernández, Azucena & Hernández-Eugenio, Guadalupe & Aguilar-Méndez, Miguel Ángel & Espinosa-Solares, Teodoro, 2020. "Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles," Renewable Energy, Elsevier, vol. 147(P1), pages 204-213.
- Bahare Salehi & Lijun Wang, 2022. "Critical Review on Nanomaterials for Enhancing Bioconversion and Bioremediation of Agricultural Wastes and Wastewater," Energies, MDPI, vol. 15(15), pages 1-21, July.
- Tariq Alkhrissat & Ghada Kassab & Mu’tasim Abdel-Jaber, 2023. "Impact of Iron Oxide Nanoparticles on Anaerobic Co-Digestion of Cow Manure and Sewage Sludge," Energies, MDPI, vol. 16(15), pages 1-17, August.
- Ghofrani-Isfahani, Parisa & Baniamerian, Hamed & Tsapekos, Panagiotis & Alvarado-Morales, Merlin & Kasama, Takeshi & Shahrokhi, Mohammad & Vossoughi, Manouchehr & Angelidaki, Irini, 2020. "Effect of metal oxide based TiO2 nanoparticles on anaerobic digestion process of lignocellulosic substrate," Energy, Elsevier, vol. 191(C).
- Gómez Camacho, Carlos E. & Romano, Francesco I. & Ruggeri, Bernardo, 2018. "Macro approach analysis of dark biohydrogen production in the presence of zero valent powered Fe°," Energy, Elsevier, vol. 159(C), pages 525-533.
- Iliana Dompara & Angeliki Maragkaki & Nikolaos Papastefanakis & Christina Floraki & Dimitra Vernardou & Thrassyvoulos Manios, 2023. "Effects of Different Materials on Biogas Production during Anaerobic Digestion of Food Waste," Sustainability, MDPI, vol. 15(7), pages 1-13, March.
- Cerrillo, Míriam & Burgos, Laura & Ruiz, Beatriz & Barrena, Raquel & Moral-Vico, Javier & Font, Xavier & Sánchez, Antoni & Bonmatí, August, 2021. "In-situ methane enrichment in continuous anaerobic digestion of pig slurry by zero-valent iron nanoparticles addition under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 180(C), pages 372-382.
- Kumar, Vikas & Nabaterega, Resty & Khoei, Shiva & Eskicioglu, Cigdem, 2021. "Insight into interactions between syntrophic bacteria and archaea in anaerobic digestion amended with conductive materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- M. Samer & O. Hijazi & E. M. Abdelsalam & A. El-Hussein & Y. A. Attia & I. H. Yacoub & H. Bernhardt, 2021. "Life cycle assessment of using laser treatment and nanomaterials to produce biogas through anaerobic digestion of slurry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14683-14696, October.
- Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
- Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
- Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
- Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
- Liang, Jinsong & Nabi, Mohammad & Zhang, Panyue & Zhang, Guangming & Cai, Yajing & Wang, Qingyan & Zhou, Zeyan & Ding, Yiran, 2020. "Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
- Grosser, Anna & Grobelak, Anna & Rorat, Agnieszka & Courtois, Pauline & Vandenbulcke, Franck & Lemière, Sébastien & Guyoneaud, Remy & Attard, Eleonore & Celary, Piotr, 2021. "Effects of silver nanoparticles on performance of anaerobic digestion of sewage sludge and associated microbial communities," Renewable Energy, Elsevier, vol. 171(C), pages 1014-1025.
- Chen, Yi-di & Li, Suping & Ho, Shih-Hsin & Wang, Chengyu & Lin, Yen-Chang & Nagarajan, Dillirani & Chang, Jo-Shu & Ren, Nan-qi, 2018. "Integration of sludge digestion and microalgae cultivation for enhancing bioenergy and biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 76-90.
- Wei, Jing & Hao, Xiaodi & van Loosdrecht, Mark C.M. & Li, Ji, 2018. "Feasibility analysis of anaerobic digestion of excess sludge enhanced by iron: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 16-26.
- Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
- Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
More about this item
Keywords
Biogas; Laser irradiation; Photobiostimulation; Biomass; Anaerobic treatment; Waste management;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:163:y:2018:i:c:p:404-415. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.