IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v160y2018icp388-398.html
   My bibliography  Save this article

Large eddy simulation of an H-Darrieus rotor

Author

Listed:
  • Patil, Rohit
  • Daróczy, László
  • Janiga, Gábor
  • Thévenin, Dominique

Abstract

This study primarily aims to examine the flow field around an H-Darrieus wind turbine using Large Eddy Simulation (LES). The corresponding experimental data for the validation is provided by TU Delft. As in the experiments, the turbine operates at a tip speed ratio (TSR) of 2 and a chord-based Reynolds number (Re) of 8·104. A dedicated block-structured mesh has been generated to perform 3D LES simulation by using the WALE subgrid model. The low TSR results in a high angle of attack and causes the turbine to experience dynamic stall, leading to particularly challenging aerodynamic conditions. Normal and tangential forces obtained by LES are compared with experimental results, leading overall to a good agreement. The quality of the LES computation is further confirmed by analyzing turbulent spectra at several locations in the simulations. Finally, vortex shedding from a single turbine blade is studied, revealing that six distinct leading-edge and trailing-edge vortex pairs form and detach during one rotation.

Suggested Citation

  • Patil, Rohit & Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2018. "Large eddy simulation of an H-Darrieus rotor," Energy, Elsevier, vol. 160(C), pages 388-398.
  • Handle: RePEc:eee:energy:v:160:y:2018:i:c:p:388-398
    DOI: 10.1016/j.energy.2018.06.203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218312684
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eriksson, Sandra & Bernhoff, Hans & Leijon, Mats, 2008. "Evaluation of different turbine concepts for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1419-1434, June.
    2. Daróczy, László & Janiga, Gábor & Petrasch, Klaus & Webner, Michael & Thévenin, Dominique, 2015. "Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors," Energy, Elsevier, vol. 90(P1), pages 680-690.
    3. Daróczy, László & Janiga, Gábor & Thévenin, Dominique, 2016. "Analysis of the performance of a H-Darrieus rotor under uncertainty using Polynomial Chaos Expansion," Energy, Elsevier, vol. 113(C), pages 399-412.
    4. Peng, H.Y. & Lam, H.F., 2016. "Turbulence effects on the wake characteristics and aerodynamic performance of a straight-bladed vertical axis wind turbine by wind tunnel tests and large eddy simulations," Energy, Elsevier, vol. 109(C), pages 557-568.
    5. Li, Chao & Zhu, Songye & Xu, You-lin & Xiao, Yiqing, 2013. "2.5D large eddy simulation of vertical axis wind turbine in consideration of high angle of attack flow," Renewable Energy, Elsevier, vol. 51(C), pages 317-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    2. Sajid Ali & Choon-Man Jang, 2021. "Effects of Tip Speed Ratios on the Blade Forces of a Small H-Darrieus Wind Turbine," Energies, MDPI, vol. 14(13), pages 1-18, July.
    3. Francesco Balduzzi & Marco Zini & Andreu Carbó Molina & Gianni Bartoli & Tim De Troyer & Mark C. Runacres & Giovanni Ferrara & Alessandro Bianchini, 2020. "Understanding the Aerodynamic Behavior and Energy Conversion Capability of Small Darrieus Vertical Axis Wind Turbines in Turbulent Flows," Energies, MDPI, vol. 13(11), pages 1-15, June.
    4. Mohamed, M.H., 2019. "Criticism study of J-Shaped darrieus wind turbine: Performance evaluation and noise generation assessment," Energy, Elsevier, vol. 177(C), pages 367-385.
    5. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2018. "Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades," Energy, Elsevier, vol. 165(PB), pages 1129-1148.
    6. Tian, Wenlong & Ni, Xiwen & Li, Bo & Yang, Guangyong & Mao, Zhaoyong, 2023. "Improving the efficiency of Darrieus turbines through a gear-like turbine layout," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    2. Lam, H.F. & Peng, H.Y., 2017. "Measurements of the wake characteristics of co- and counter-rotating twin H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 131(C), pages 13-26.
    3. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    4. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    5. Wang, Ying & Shen, Sheng & Li, Gaohui & Huang, Diangui & Zheng, Zhongquan, 2018. "Investigation on aerodynamic performance of vertical axis wind turbine with different series airfoil shapes," Renewable Energy, Elsevier, vol. 126(C), pages 801-818.
    6. Peng, H.Y. & Lam, H.F. & Liu, H.J., 2019. "Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments," Energy, Elsevier, vol. 173(C), pages 121-132.
    7. Chong, Wen-Tong & Muzammil, Wan Khairul & Ong, Hwai-Chyuan & Sopian, Kamaruzzaman & Gwani, Mohammed & Fazlizan, Ahmad & Poh, Sin-Chew, 2019. "Performance analysis of the deflector integrated cross axis wind turbine," Renewable Energy, Elsevier, vol. 138(C), pages 675-690.
    8. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    9. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape and position of a thick deflector plate in front of a hydraulic Savonius turbine," Energy, Elsevier, vol. 189(C).
    10. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    11. Wenxing Hao & Abdulshakur Abdi & Guobiao Wang & Fuzhong Wu, 2023. "Study on the Pitch Angle Effect on the Power Coefficient and Blade Fatigue Load of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 16(21), pages 1-18, October.
    12. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    13. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    14. Erik Möllerström & Fredric Ottermo & Jonny Hylander & Hans Bernhoff, 2015. "Noise Emission of a 200 kW Vertical Axis Wind Turbine," Energies, MDPI, vol. 9(1), pages 1-10, December.
    15. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Kamau, Joseph N. & Danao, Louis Angelo M., 2015. "A numerical analysis of unsteady inflow wind for site specific vertical axis wind turbine: A case study for Marsabit and Garissa in Kenya," Renewable Energy, Elsevier, vol. 76(C), pages 648-661.
    16. Kerikous, Emeel & Thévenin, Dominique, 2019. "Optimal shape of thick blades for a hydraulic Savonius turbine," Renewable Energy, Elsevier, vol. 134(C), pages 629-638.
    17. Chong, Wen-Tong & Muzammil, Wan Khairul & Wong, Kok-Hoe & Wang, Chin-Tsan & Gwani, Mohammed & Chu, Yung-Jeh & Poh, Sin-Chew, 2017. "Cross axis wind turbine: Pushing the limit of wind turbine technology with complementary design," Applied Energy, Elsevier, vol. 207(C), pages 78-95.
    18. Li, Chao & Xiao, Yiqing & Xu, You-lin & Peng, Yi-xin & Hu, Gang & Zhu, Songye, 2018. "Optimization of blade pitch in H-rotor vertical axis wind turbines through computational fluid dynamics simulations," Applied Energy, Elsevier, vol. 212(C), pages 1107-1125.
    19. Zhong, Junwei & Li, Jingyin & Guo, Penghua & Wang, Yu, 2019. "Dynamic stall control on a vertical axis wind turbine aerofoil using leading-edge rod," Energy, Elsevier, vol. 174(C), pages 246-260.
    20. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.

    More about this item

    Keywords

    Wind energy; Darrieus; CFD; H-rotor; LES;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:160:y:2018:i:c:p:388-398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.