Exergy-based thermal management of a steelmaking process linked with a multi-generation power and desalination system
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2018.06.213
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Szargut, Jan & Szczygiel, Ireneusz, 2009. "Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity," Energy, Elsevier, vol. 34(7), pages 827-837.
- Szargut, Jan & Szczygiel, Ireneusz, 2005. "Comparison of the efficiency of the variants of a primary gas turbine supplementing a coal-fired power plant," Energy, Elsevier, vol. 30(7), pages 1204-1217.
- Szargut, Jan T., 2004. "Optimization of the design parameters aiming at the minimization of the depletion of non-renewable resources," Energy, Elsevier, vol. 29(12), pages 2161-2169.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ishaq, H. & Dincer, I. & Naterer, G.F., 2019. "Exergy and cost analyses of waste heat recovery from furnace cement slag for clean hydrogen production," Energy, Elsevier, vol. 172(C), pages 1243-1253.
- Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).
- Temiz, Mert & Dincer, Ibrahim, 2021. "Concentrated solar driven thermochemical hydrogen production plant with thermal energy storage and geothermal systems," Energy, Elsevier, vol. 219(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
- Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
- Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
- Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
- Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
- Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
- Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
- Bianchi, Michele & Branchini, Lisa & Cesari, Simone & De Pascale, Andrea & Melino, Francesco, 2015. "Repowering existing under-utilized WTE power plant with gas turbines," Applied Energy, Elsevier, vol. 160(C), pages 902-911.
- Ryszard Bartnik & Waldemar Skomudek & Zbigniew Buryn & Anna Hnydiuk-Stefan & Aleksandra Otawa, 2018. "Methodology and Continuous Time Mathematical Model to Select Optimum Power of Gas Turbine Set for Dual-Fuel Gas-Steam Combined Heat and Power Plant in Parallel System," Energies, MDPI, vol. 11(7), pages 1-22, July.
- Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
- Joy, Jubil & Kochunni, Sarun Kumar & Chowdhury, Kanchan, 2022. "Size reduction and enhanced power generation in ORC by vaporizing LNG at high supercritical pressure irrespective of delivery pressure," Energy, Elsevier, vol. 260(C).
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Park, Chansaem & Song, Kiwook & Lee, Sangho & Lim, Youngsub & Han, Chonghun, 2012. "Retrofit design of a boil-off gas handling process in liquefied natural gas receiving terminals," Energy, Elsevier, vol. 44(1), pages 69-78.
- Lee, Ung & Kim, Kyeongsu & Han, Chonghun, 2014. "Design and optimization of multi-component organic rankine cycle using liquefied natural gas cryogenic exergy," Energy, Elsevier, vol. 77(C), pages 520-532.
- Ahmad, Abdalqader & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Air conditioning and power generation for residential applications using liquid nitrogen," Applied Energy, Elsevier, vol. 184(C), pages 630-640.
- Gryboś, Dominik & Leszczyński, Jacek, 2023. "Exergy analysis of pressure reduction, back pressure and intermittent air supply configuration of utilization/expansion stage in compressed air systems," Energy, Elsevier, vol. 285(C).
- Carapellucci, Roberto & Giordano, Lorena, 2015. "Upgrading existing coal-fired power plants through heavy-duty and aeroderivative gas turbines," Applied Energy, Elsevier, vol. 156(C), pages 86-98.
- Ukidwe, Nandan U. & Bakshi, Bhavik R., 2007. "Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model," Energy, Elsevier, vol. 32(9), pages 1560-1592.
- Valero, Antonio & Usón, Sergio & Torres, César & Valero, Alicia & Agudelo, Andrés & Costa, Jorge, 2013. "Thermoeconomic tools for the analysis of eco-industrial parks," Energy, Elsevier, vol. 62(C), pages 62-72.
- Ziębik, Andrzej & Gładysz, Paweł, 2018. "Systems approach to energy and exergy analyses," Energy, Elsevier, vol. 165(PA), pages 396-407.
More about this item
Keywords
Thermal management; Desalination; Hydrogen production; Multi-generation; Energy; Exergy; Efficiency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:159:y:2018:i:c:p:1206-1217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.