IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp623-631.html
   My bibliography  Save this article

Numerical analysis of a non-steady state phenomenon during the ignition process in a condensing boiler

Author

Listed:
  • Mohr, Manuel
  • Klančišar, Marko
  • Schloen, Tim
  • Samec, Niko
  • Kokalj, Filip

Abstract

This paper presents the most appropriate numerical approach for investigation of the ignition phenomena of the premixed confined combustion in a condensing boiler. A transient simulation with the coupling of the burning velocity model was sufficient enough to describe fully the phenomena that are responsible for the ignition sequence and the flame stabilization, representing most of the actual ignition problems in general. Detailed simulation investigation with the ignition model leads to better comprehension of the whole flame stabilization process and, as a consequence, it facilitates the optimization potential of the global ignition process in boilers. Four different ignition power loads were observed in the investigation. Also, the ratio between oxidizer (air in our case) and the fuel (Methane) was based on the normal combustion process for the described condensing boiler. The numerical results were validated with the experimental set up and testing. Results comparison shows very good correlation of numerical simulation with the experimental case. The ignition times both tested and simulated, that have a significant impact on flame stabilization, are in very good correlation. Also, very good correlations were obtained between the pressure profiles of the numerical and experimental studies.

Suggested Citation

  • Mohr, Manuel & Klančišar, Marko & Schloen, Tim & Samec, Niko & Kokalj, Filip, 2018. "Numerical analysis of a non-steady state phenomenon during the ignition process in a condensing boiler," Energy, Elsevier, vol. 158(C), pages 623-631.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:623-631
    DOI: 10.1016/j.energy.2018.06.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alipoor, Alireza & Mazaheri, Kiumars, 2016. "Combustion characteristics and flame bifurcation in repetitive extinction-ignition dynamics for premixed hydrogen-air combustion in a heated micro channel," Energy, Elsevier, vol. 109(C), pages 650-663.
    2. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
    2. Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Jianlong & Zhao, Haibo, 2020. "Effect of conjugate heat exchange of flame holder on laminar premixed flame stabilization in a meso-scale diverging combustor," Energy, Elsevier, vol. 198(C).
    2. Tang, Aikun & Cai, Tao & Deng, Jiang & Zhao, Dan & Huang, Qiuhan & Zhou, Chen, 2019. "Experimental study on flame structure transitions of premixed propane/air in micro-scale planar combustors," Energy, Elsevier, vol. 179(C), pages 558-570.
    3. Wan, Jianlong & Fan, Aiwu & Yao, Hong & Liu, Wei, 2016. "Experimental investigation and numerical analysis on the blow-off limits of premixed CH4/air flames in a mesoscale bluff-body combustor," Energy, Elsevier, vol. 113(C), pages 193-203.
    4. Peng, Qingguo & Wu, Yifeng & E, Jiaqiang & Yang, Wenming & Xu, Hongpeng & Li, Zhenwei, 2019. "Combustion characteristics and thermal performance of premixed hydrogen-air in a two-rearward-step micro tube," Applied Energy, Elsevier, vol. 242(C), pages 424-438.
    5. Abbaspour, Pouyan & Alipoor, Alireza, 2024. "Numerical study of wavy-wall effects on premixed H2/air flammability limits, propagation modes, and thermal performance of micro combustion chambers," Applied Energy, Elsevier, vol. 359(C).
    6. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    7. David M. Dias & Pedro R. Resende & Alexandre M. Afonso, 2024. "A Review on Micro-Combustion Flame Dynamics and Micro-Propulsion Systems," Energies, MDPI, vol. 17(6), pages 1-35, March.
    8. E, Jiaqiang & Meng, Tian & Chen, Jingwei & Wu, Weiwei & Zhao, Xiaohuan & Zhang, Bin & Peng, Qingguo, 2021. "Effect analysis on performance enhancement of a hydrogen/air non-premixed micro combustor with sudden expansion and contraction structure," Energy, Elsevier, vol. 230(C).
    9. Li, Xinyan & Zhao, Dan & Yang, Xinglin, 2017. "Experimental and theoretical bifurcation study of a nonlinear standing-wave thermoacoustic system," Energy, Elsevier, vol. 135(C), pages 553-562.
    10. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    11. Fan, Aiwu & Zhang, He & Wan, Jianlong, 2017. "Numerical investigation on flame blow-off limit of a novel microscale Swiss-roll combustor with a bluff-body," Energy, Elsevier, vol. 123(C), pages 252-259.
    12. Alipoor, Alireza & Saidi, Mohammad Hassan, 2017. "Numerical study of hydrogen-air combustion characteristics in a novel micro-thermophotovoltaic power generator," Applied Energy, Elsevier, vol. 199(C), pages 382-399.
    13. Rana, Uttam & Chakraborty, Suman & Som, S.K., 2017. "Prediction of flame speed and exergy analysis of premixed flame in a heat recirculating cylindrical micro combustor," Energy, Elsevier, vol. 126(C), pages 658-670.
    14. Wan, Jianlong & Zhao, Haibo, 2018. "Thermal performance of solid walls in a mesoscale combustor with a plate flame holder and preheating channels," Energy, Elsevier, vol. 157(C), pages 448-459.
    15. Alipoor, Alireza & Mazaheri, Kiumars, 2020. "Maps of flame dynamics for premixed lean hydrogen-air combustion in a heated microchannel," Energy, Elsevier, vol. 194(C).
    16. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    17. Xiang, Ying & Yuan, Zili & Wang, Shixuan & Fan, Aiwu, 2019. "Effects of flow rate and fuel/air ratio on propagation behaviors of diffusion H2/air flames in a micro-combustor," Energy, Elsevier, vol. 179(C), pages 315-322.
    18. Sarrafan Sadeghi, Soroush & Tabejamaat, Sadegh & Ghahremani, Amirreza & Narimani Asl, Sina, 2024. "A novel Swiss-roll counterflow micro-combustor: Experimental investigation of flame dynamic characteristics by spectroscopy and RGB image processing methods," Energy, Elsevier, vol. 299(C).
    19. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    20. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:623-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.