IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp293-304.html
   My bibliography  Save this article

Key pillars of successful energy saving projects in small and medium industrial enterprises

Author

Listed:
  • Máša, Vítězslav
  • Stehlík, Petr
  • Touš, Michal
  • Vondra, Marek

Abstract

Commonly used approaches in energy management have been found to be insufficient in many small and medium industrial enterprises. The benefits of energy saving solutions can be rather limited. A lack of procedures providing optimal solutions is noticeable from a literature review. Systematic and critical observations of numerous energy saving projects performed by the authors revealed that it is possible to specify four pillars which are crucial for successfully implementing these projects. They should be applied as much as possible and can be specified as follows:1. Technical expertise: Knowledge of industrial facility and possible savings based on experience2. Good operational data: The acquisition of data in a facility3. Modeling, simulation and optimisation: Assessment of various options and the selection of the most beneficial one4. Methodology: A systematic approach including all three remaining pillars

Suggested Citation

  • Máša, Vítězslav & Stehlík, Petr & Touš, Michal & Vondra, Marek, 2018. "Key pillars of successful energy saving projects in small and medium industrial enterprises," Energy, Elsevier, vol. 158(C), pages 293-304.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:293-304
    DOI: 10.1016/j.energy.2018.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218310715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liew, Peng Yen & Theo, Wai Lip & Wan Alwi, Sharifah Rafidah & Lim, Jeng Shiun & Abdul Manan, Zainuddin & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev, 2017. "Total Site Heat Integration planning and design for industrial, urban and renewable systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 964-985.
    2. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    3. Zhang, Zijun & Zeng, Yaohui & Kusiak, Andrew, 2012. "Minimizing pump energy in a wastewater processing plant," Energy, Elsevier, vol. 47(1), pages 505-514.
    4. Fang, Wen Shwo & Miller, Stephen M. & Yeh, Chih-Chuan, 2012. "The effect of ESCOs on energy use," Energy Policy, Elsevier, vol. 51(C), pages 558-568.
    5. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    6. Lee, Dasheng & Cheng, Chin-Chi, 2016. "Energy savings by energy management systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 760-777.
    7. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    8. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    9. Osuolale, Funmilayo N. & Zhang, Jie, 2016. "Energy efficiency optimisation for distillation column using artificial neural network models," Energy, Elsevier, vol. 106(C), pages 562-578.
    10. Touš, Michal & Pavlas, Martin & Putna, Ondřej & Stehlík, Petr & Crha, Lukáš, 2015. "Combined heat and power production planning in a waste-to-energy plant on a short-term basis," Energy, Elsevier, vol. 90(P1), pages 137-147.
    11. Iturriaga, E. & Aldasoro, U. & Campos-Celador, A. & Sala, J.M., 2017. "A general model for the optimization of energy supply systems of buildings," Energy, Elsevier, vol. 138(C), pages 954-966.
    12. Smith, Leigh & Ball, Peter, 2012. "Steps towards sustainable manufacturing through modelling material, energy and waste flows," International Journal of Production Economics, Elsevier, vol. 140(1), pages 227-238.
    13. Bertoldi, Paolo & Boza-Kiss, Benigna, 2017. "Analysis of barriers and drivers for the development of the ESCO markets in Europe," Energy Policy, Elsevier, vol. 107(C), pages 345-355.
    14. Viesi, Diego & Pozzar, Francesca & Federici, Alessandro & Crema, Luigi & Mahbub, Md Shahriar, 2017. "Energy efficiency and sustainability assessment of about 500 small and medium-sized enterprises in Central Europe region," Energy Policy, Elsevier, vol. 105(C), pages 363-374.
    15. Eligius M. T. Hendrix & Boglárka G.-Tóth, 2010. "Nonlinear Programming algorithms," Springer Optimization and Its Applications, in: Introduction to Nonlinear and Global Optimization, chapter 5, pages 91-136, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngan, Sue Lin & How, Bing Shen & Teng, Sin Yong & Promentilla, Michael Angelo B. & Yatim, Puan & Er, Ah Choy & Lam, Hon Loong, 2019. "Prioritization of sustainability indicators for promoting the circular economy: The case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 314-331.
    2. Yu, Wei & Patros, Panos & Young, Brent & Klinac, Elsa & Walmsley, Timothy Gordon, 2022. "Energy digital twin technology for industrial energy management: Classification, challenges and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Zhang, Yixiang & Zhou, Weiyi & Liu, Meiling, 2022. "Driving factors of enterprise energy-saving and emission reduction behaviors," Energy, Elsevier, vol. 256(C).
    4. Henry Ekwaro-Osire & Dennis Bode & Klaus-Dieter Thoben & Jan-Hendrik Ohlendorf, 2022. "Identification of Machine Learning Relevant Energy and Resource Manufacturing Efficiency Levers," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
    5. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    7. Teng, Sin Yong & Máša, Vítězslav & Touš, Michal & Vondra, Marek & Lam, Hon Loong & Stehlík, Petr, 2022. "Waste-to-energy forecasting and real-time optimization: An anomaly-aware approach," Renewable Energy, Elsevier, vol. 181(C), pages 142-155.
    8. A S M Monjurul Hasan & Mohammad Rokonuzzaman & Rashedul Amin Tuhin & Shah Md. Salimullah & Mahfuz Ullah & Taiyeb Hasan Sakib & Patrik Thollander, 2019. "Drivers and Barriers to Industrial Energy Efficiency in Textile Industries of Bangladesh," Energies, MDPI, vol. 12(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elpida V. Tachmitzaki & Eleni A. Didaskalou & Dimitrios A. Georgakellos, 2019. "Energy Management Practices’ Determinants in Greek Enterprises," Sustainability, MDPI, vol. 12(1), pages 1-18, December.
    2. Elena Stefana & Paola Cocca & Filippo Marciano & Diana Rossi & Giuseppe Tomasoni, 2019. "A Review of Energy and Environmental Management Practices in Cast Iron Foundries to Increase Sustainability," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    3. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Morley, Janine, 2018. "Rethinking energy services: The concept of ‘meta-service’ and implications for demand reduction and servicizing policy," Energy Policy, Elsevier, vol. 122(C), pages 563-569.
    5. Teng, Sin Yong & Touš, Michal & Leong, Wei Dong & How, Bing Shen & Lam, Hon Loong & Máša, Vítězslav, 2021. "Recent advances on industrial data-driven energy savings: Digital twins and infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Paramonova, Svetlana & Thollander, Patrik, 2016. "Energy-efficiency networks for SMEs: Learning from the Swedish experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 295-307.
    7. Brown, Donal & Hall, Stephen & Martiskainen, Mari & Davis, Mark E., 2022. "Conceptualising domestic energy service business models: A typology and policy recommendations," Energy Policy, Elsevier, vol. 161(C).
    8. José Rafael Lopes & Salvador Ávila & Ricardo Kalid & Jorge Laureano Moya Rodríguez, 2018. "Energy Efficiency Improvement in Non-Intensive Energy Enterprises: A Framework Proposal," Energies, MDPI, vol. 11(5), pages 1-16, May.
    9. Cagno, Enrico & Franzò, Simone & Storoni, Elena & Trianni, Andrea, 2022. "A characterisation framework of energy services offered by energy service companies," Applied Energy, Elsevier, vol. 324(C).
    10. Mainar-Toledo, M.D. & Castan, M.A. & Millán, G. & Rodin, V. & Kollmann, A. & Peccianti, F. & Annunziata, E. & Rizzi, F. & Frey, M. & Iannone, F. & Zaldua, M. & Kuittinen, H., 2022. "Accelerating sustainable and economic development via industrial energy cooperation and shared services – A case study for three European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    11. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    12. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    13. Păunescu Carmen & Blid Laura, 2016. "Effective energy planning for improving the enterprise’s energy performance," Management & Marketing, Sciendo, vol. 11(3), pages 512-531, September.
    14. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    15. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    16. Song, Runrun & Chang, Chenglin & Tang, Qikui & Wang, Yufei & Feng, Xiao & El-Halwagi, Mahmoud M., 2017. "The implementation of inter-plant heat integration among multiple plants. Part II: The mathematical model," Energy, Elsevier, vol. 135(C), pages 382-393.
    17. S.R. Patterson & E. Kozan & P. Hyland, 2016. "An integrated model of an open-pit coal mine: improving energy efficiency decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4213-4227, July.
    18. Changyu Zhou & Guohe Huang & Jiapei Chen, 2019. "A Type-2 Fuzzy Chance-Constrained Fractional Integrated Modeling Method for Energy System Management of Uncertainties and Risks," Energies, MDPI, vol. 12(13), pages 1-21, June.
    19. Wunhong Su & Liuzhen Zhang & Chao Ge & Shuai Chen, 2022. "Association between Internal Control and Sustainability: A Literature Review Based on the SOX Act Framework," Sustainability, MDPI, vol. 14(15), pages 1-30, August.
    20. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:293-304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.