IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v158y2018icp1070-1079.html
   My bibliography  Save this article

Experimental and numerical study on internal pressure load capacity and failure mechanism of CO2 corroded tubing

Author

Listed:
  • Liu, Zhenyi
  • Zhao, Yao
  • Zhou, Yi
  • Qian, Xinming
  • Li, Mingzhi
  • Li, Pengliang
  • Li, Xuan
  • Zhang, Qi
  • Liu, Yu
  • Zhao, Lei
  • Zhang, Deping

Abstract

With the purpose of researching on the influence of CO2 injection tubing with corrosion defects to the safety production of CO2-EOR flooding, experimental tests and finite element simulations were conducted to analyze the failure pressure and stress distribution of P110 pipe with single point corrosion, axial line corrosion and uniform corrosion defects. Metallographic examination was also done to investigate the micro-mechanism of pipe failure. Depending on the experimental results, P110 tubes with corrosion defects mainly ruptured with different sizes of opening. For single point corrosion defects, the injection tubing did not fail when the inner corrosion pressure is 93.9 MPa and the corrosion depth ratio(d/t) is 0.964. For axial line corrosion defects, the higher the failure pressure, the larger the opening was. The result of injection tubing with uniform corrosion defect is contrary to the result of injection tubing with axial line corrosion. In conclusion, the integrity of CO2 injection tubing is crucial for CO2 flooding production, in which the defect depth plays a more important role than defect length. DNV RP-F101 model can be a right model to predict failure pressure of all kinds of corrosion defect except single point corrosion.

Suggested Citation

  • Liu, Zhenyi & Zhao, Yao & Zhou, Yi & Qian, Xinming & Li, Mingzhi & Li, Pengliang & Li, Xuan & Zhang, Qi & Liu, Yu & Zhao, Lei & Zhang, Deping, 2018. "Experimental and numerical study on internal pressure load capacity and failure mechanism of CO2 corroded tubing," Energy, Elsevier, vol. 158(C), pages 1070-1079.
  • Handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1070-1079
    DOI: 10.1016/j.energy.2018.06.121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218311861
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.06.121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jia & Liang, Xi & Cockerill, Tim, 2011. "Getting ready for carbon capture and storage through a ‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in Guangdong province, China," Energy, Elsevier, vol. 36(10), pages 5916-5924.
    2. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    3. Višković, Alfredo & Franki, Vladimir & Valentić, Vladimir, 2014. "CCS (carbon capture and storage) investment possibility in South East Europe: A case study for Croatia," Energy, Elsevier, vol. 70(C), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nemet, Gregory F. & Baker, Erin & Jenni, Karen E., 2013. "Modeling the future costs of carbon capture using experts' elicited probabilities under policy scenarios," Energy, Elsevier, vol. 56(C), pages 218-228.
    2. Yang, Lin & Xu, Mao & Fan, Jingli & Liang, Xi & Zhang, Xian & Lv, Haodong & Wang, Dong, 2021. "Financing coal-fired power plant to demonstrate CCS (carbon capture and storage) through an innovative policy incentive in China," Energy Policy, Elsevier, vol. 158(C).
    3. Vögele, Stefan & Rübbelke, Dirk, 2013. "Decisions on investments in photovoltaics and carbon capture and storage: A comparison between two different greenhouse gas control strategies," Energy, Elsevier, vol. 62(C), pages 385-392.
    4. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    5. Fan, Xing & Wang, Yangle & Zhou, Yuan & Chen, Jingtan & Huang, Yanping & Wang, Junfeng, 2018. "Experimental study of supercritical CO2 leakage behavior from pressurized vessels," Energy, Elsevier, vol. 150(C), pages 342-350.
    6. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    7. Lund, Henrik & Mathiesen, Brian Vad, 2012. "The role of Carbon Capture and Storage in a future sustainable energy system," Energy, Elsevier, vol. 44(1), pages 469-476.
    8. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    9. Connolly, D. & Lund, H. & Mathiesen, B.V., 2016. "Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1634-1653.
    10. Xiaoqing Zhu & Tiancheng Zhang & Weijun Gao & Danying Mei, 2020. "Analysis on Spatial Pattern and Driving Factors of Carbon Emission in Urban–Rural Fringe Mixed-Use Communities: Cases Study in East Asia," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    11. Li, Kang & Zhou, Xuejin & Tu, Ran & Xie, Qiyuan & Jiang, Xi, 2014. "The flow and heat transfer characteristics of supercritical CO2 leakage from a pipeline," Energy, Elsevier, vol. 71(C), pages 665-672.
    12. Mortari, Daniela A. & Pereira, Fernando M. & Crnkovic, Paula M., 2020. "Experimental investigation of the carbon dioxide effect on the devolatilization and combustion of a coal and sugarcane bagasse," Energy, Elsevier, vol. 204(C).
    13. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    14. Ha-Duong, Minh & Nguyen-Trinh, Hoang Anh, 2017. "Two scenarios for carbon capture and storage in Vietnam," Energy Policy, Elsevier, vol. 110(C), pages 559-569.
    15. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    16. Sovacool, Benjamin K., 2017. "Contestation, contingency, and justice in the Nordic low-carbon energy transition," Energy Policy, Elsevier, vol. 102(C), pages 569-582.
    17. Chen, Xue & Wang, Fuqiang & Yan, Xuewei & Han, Yafen & Cheng, Ziming & Jie, Zhu, 2018. "Thermochemical performance of solar driven CO2 reforming of methane in volumetric reactor with gradual foam structure," Energy, Elsevier, vol. 151(C), pages 545-555.
    18. Franki, Vladimir & Višković, Alfredo, 2021. "Multi-criteria decision support: A case study of Southeast Europe power systems," Utilities Policy, Elsevier, vol. 73(C).
    19. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    20. Dedinec, Aleksandar & Taseska-Gjorgievska, Verica & Markovska, Natasa & Obradovic Grncarovska, Teodora & Duic, Neven & Pop-Jordanov, Jordan & Taleski, Rubin, 2016. "Towards post-2020 climate change regime: Analyses of various mitigation scenarios and contributions for Macedonia," Energy, Elsevier, vol. 94(C), pages 124-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:158:y:2018:i:c:p:1070-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.