IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v155y2018icp1066-1076.html
   My bibliography  Save this article

Optimal operating conditions and cost-effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis

Author

Listed:
  • Takeshita, Keisuke
  • Amano, Yoshiharu

Abstract

In this paper, optimal design/operating conditions are presented by considering the cost-effectiveness and operability of a single-stage ammonia/water absorption refrigerator (AAR) via exergy analysis. Chemical exergy change constitutes complexity with respect to exergy analysis of absorption systems. In the study, Gibbs free energy is considered in the exergy analysis to precisely evaluate the absorption and rectification processes including chemical exergy change. The theoretical maximum exergy efficiency of AAR and the influence of its design/operating conditions on exergy efficiency/destructions are investigated under an ideal condition. The analysis indicates the importance of the evaporator outlet liquid (bleed) ammonia mass fraction and the desorber temperature. A condition of bleed mass fraction control is illustrated. In addition, the study involves performing a sensitivity analysis of design parameters (pinch temperatures) with respect to exergy efficiency and optimal desorber temperature. Finally, design conditions that maximize exergy efficiency per cost are derived relative to the sum of thermal conductance as a cost parameter. The study demonstrates the potential for downsizing the AAR without reducing exergy efficiency. The results indicate that approximately 39% total thermal conductance reduction, maintaining nominal efficiency, or 19% total thermal conductance reduction with an exergy efficiency increase of 16% are expected when compared to those in a commercial AAR.

Suggested Citation

  • Takeshita, Keisuke & Amano, Yoshiharu, 2018. "Optimal operating conditions and cost-effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis," Energy, Elsevier, vol. 155(C), pages 1066-1076.
  • Handle: RePEc:eee:energy:v:155:y:2018:i:c:p:1066-1076
    DOI: 10.1016/j.energy.2018.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218306170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Faming & Zhou, Weisheng & Ikegami, Yasuyuki & Nakagami, Kenichi & Su, Xuanming, 2014. "Energy–exergy analysis and optimization of the solar-boosted Kalina cycle system 11 (KCS-11)," Renewable Energy, Elsevier, vol. 66(C), pages 268-279.
    2. Zhu, Linghui & Gu, Junjie, 2010. "Second law-based thermodynamic analysis of ammonia/sodium thiocyanate absorption system," Renewable Energy, Elsevier, vol. 35(9), pages 1940-1946.
    3. Vijayaraghavan, S. & Goswami, D.Y., 2006. "A combined power and cooling cycle modified to improve resource utilization efficiency using a distillation stage," Energy, Elsevier, vol. 31(8), pages 1177-1196.
    4. Takeshita, Keisuke & Amano, Yoshiharu & Hashizume, Takumi, 2005. "Experimental study of advanced cogeneration system with ammonia–water mixture cycles at bottoming," Energy, Elsevier, vol. 30(2), pages 247-260.
    5. Onan, C. & Ozkan, D.B. & Erdem, S., 2010. "Exergy analysis of a solar assisted absorption cooling system on an hourly basis in villa applications," Energy, Elsevier, vol. 35(12), pages 5277-5285.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barkhordarian, Orbel & Behbahaninia, Ali & Bahrampoury, Rasool, 2017. "A novel ammonia-water combined power and refrigeration cycle with two different cooling temperature levels," Energy, Elsevier, vol. 120(C), pages 816-826.
    2. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    3. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    4. Mahdavi, Navid & Khalilarya, Shahram, 2019. "Comprehensive thermodynamic investigation of three cogeneration systems including GT-HRSG/RORC as the base system, intermediate system and solar hybridized system," Energy, Elsevier, vol. 181(C), pages 1252-1272.
    5. Maia, Cristiana Brasil & Ferreira, André Guimarães & Cabezas-Gómez, Luben & de Oliveira Castro Silva, Janaína & de Morais Hanriot, Sérgio, 2017. "Thermodynamic analysis of the drying process of bananas in a small-scale solar updraft tower in Brazil," Renewable Energy, Elsevier, vol. 114(PB), pages 1005-1012.
    6. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    7. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    8. Vaclav Novotny & David J. Szucs & Jan Špale & Hung-Yin Tsai & Michal Kolovratnik, 2021. "Absorption Power and Cooling Combined Cycle with an Aqueous Salt Solution as a Working Fluid and a Technically Feasible Configuration," Energies, MDPI, vol. 14(12), pages 1-26, June.
    9. Khoa, T.D. & Shuhaimi, M. & Hashim, H. & Panjeshahi, M.H., 2010. "Optimal design of distillation column using three dimensional exergy analysis curves," Energy, Elsevier, vol. 35(12), pages 5309-5319.
    10. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    11. Oyewunmi, Oyeniyi A. & Kirmse, Christoph J.W. & Haslam, Andrew J. & Müller, Erich A. & Markides, Christos N., 2017. "Working-fluid selection and performance investigation of a two-phase single-reciprocating-piston heat-conversion engine," Applied Energy, Elsevier, vol. 186(P3), pages 376-395.
    12. Akyuz, E. & Coskun, C. & Oktay, Z. & Dincer, I., 2012. "A novel approach for estimation of photovoltaic exergy efficiency," Energy, Elsevier, vol. 44(1), pages 1059-1066.
    13. Azizi, Saeid & Shakibi, Hamid & Shokri, Afshar & Chitsaz, Ata & Yari, Mortaza, 2023. "Multi-aspect analysis and RSM-based optimization of a novel dual-source electricity and cooling cogeneration system," Applied Energy, Elsevier, vol. 332(C).
    14. F. Tchanche, Bertrand & Pétrissans, M. & Papadakis, G., 2014. "Heat resources and organic Rankine cycle machines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1185-1199.
    15. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    16. Ghaebi, Hadi & Rostamzadeh, Hadi, 2020. "Performance comparison of two new cogeneration systems for freshwater and power production based on organic Rankine and Kalina cycles driven by salinity-gradient solar pond," Renewable Energy, Elsevier, vol. 156(C), pages 748-767.
    17. Peng, Jingping & Ge, Yunzheng & Chen, Fengyun & Liu, Lei & Wu, Haoyu & Liu, Weimin, 2022. "Theoretical and experimental study on the performance of a high-efficiency thermodynamic cycle for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 185(C), pages 734-747.
    18. Bao, Huashan & Wang, Yaodong & Charalambous, Constantinos & Lu, Zisheng & Wang, Liwei & Wang, Ruzhu & Roskilly, Anthony Paul, 2014. "Chemisorption cooling and electric power cogeneration system driven by low grade heat," Energy, Elsevier, vol. 72(C), pages 590-598.
    19. Chen, X. & Sun, L.N. & Du, S., 2022. "Analysis and optimization on a modified ammonia-water power cycle for more efficient power generation," Energy, Elsevier, vol. 241(C).
    20. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:155:y:2018:i:c:p:1066-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.