IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v30y2005i2p247-260.html
   My bibliography  Save this article

Experimental study of advanced cogeneration system with ammonia–water mixture cycles at bottoming

Author

Listed:
  • Takeshita, Keisuke
  • Amano, Yoshiharu
  • Hashizume, Takumi

Abstract

In this study, an advanced cogeneration system (ACGS) composed of three turbine systems and an ammonia absorption refrigerator is presented. The overall system configurations and some experimental results of the steady state are shown. The effectiveness of the bottoming stage that employs an ammonia–water mixture (AWM) as the working fluid is confirmed by experimental investigation. The experimental investigation shows that the AWM bottoming power-refrigeration cycles contributes to a higher bottoming efficiency, which is about 7.0% in electric power. Otherwise, the efficiency at the middle stage in conventional combined gas and steam turbine power plants is 4.6%. The cogeneration efficiency at the bottoming reached about 26.5% which is the heat and power ratio to the heat input from the heat recovery steam generator.

Suggested Citation

  • Takeshita, Keisuke & Amano, Yoshiharu & Hashizume, Takumi, 2005. "Experimental study of advanced cogeneration system with ammonia–water mixture cycles at bottoming," Energy, Elsevier, vol. 30(2), pages 247-260.
  • Handle: RePEc:eee:energy:v:30:y:2005:i:2:p:247-260
    DOI: 10.1016/j.energy.2004.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544204002701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2004.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, R.Z. & Xu, Z.Y. & Pan, Q.W. & Du, S. & Xia, Z.Z., 2016. "Solar driven air conditioning and refrigeration systems corresponding to various heating source temperatures," Applied Energy, Elsevier, vol. 169(C), pages 846-856.
    2. Padilla, Ricardo Vasquez & Demirkaya, Gökmen & Goswami, D. Yogi & Stefanakos, Elias & Rahman, Muhammad M., 2010. "Analysis of power and cooling cogeneration using ammonia-water mixture," Energy, Elsevier, vol. 35(12), pages 4649-4657.
    3. Du, S. & Wang, R.Z. & Xia, Z.Z., 2015. "Graphical analysis on internal heat recovery of a single stage ammonia–water absorption refrigeration system," Energy, Elsevier, vol. 80(C), pages 687-694.
    4. Chen, Yi & Han, Wei & Jin, Hongguang, 2017. "Proposal and analysis of a novel heat-driven absorption–compression refrigeration system at low temperatures," Applied Energy, Elsevier, vol. 185(P2), pages 2106-2116.
    5. Takeshita, Keisuke & Amano, Yoshiharu, 2018. "Optimal operating conditions and cost-effectiveness of a single-stage ammonia/water absorption refrigerator based on exergy analysis," Energy, Elsevier, vol. 155(C), pages 1066-1076.
    6. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:30:y:2005:i:2:p:247-260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.