IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v150y2018icp262-275.html
   My bibliography  Save this article

Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals

Author

Listed:
  • Glushkov, Dmitrii O.
  • Kuznetsov, Geniy V.
  • Strizhak, Pavel A.
  • Syrodoy, Semen V.

Abstract

Global problems of effective coal and oil processing waste recovery can be solved by making use of these wastes as the main fuel components for coal water slurries containing petrochemicals (CWSP). Until now, no predictive models have been developed that would simulate the sustainable ignition of CWSPs based on components with highly different properties, such as ash, moisture, and volatile content, heat of combustion, etc. This is exactly the type of model we are presenting in this paper. In order to gain a greater insight in the process under study, the experimental research has been conducted. We have created an experimental database with the main characteristics of CWSP ignition, namely the duration of stages, gas-phase and heterogeneous ignition delay times, maximum combustion temperatures, and minimum sufficient oxidizer temperatures. A mathematical model has been developed predicting the conditions and characteristics of CWSP droplet ignition. The signature feature of the model is that it accounts for all the main heat and mass transfer processes and chemical reactions in the solid fuel – liquid fuel – water system under study. This mathematical model can serve as the basis for estimating and comparing the ignition characteristics of different CWSPs.

Suggested Citation

  • Glushkov, Dmitrii O. & Kuznetsov, Geniy V. & Strizhak, Pavel A. & Syrodoy, Semen V., 2018. "Mathematical model simulating the ignition of a droplet of coal water slurry containing petrochemicals," Energy, Elsevier, vol. 150(C), pages 262-275.
  • Handle: RePEc:eee:energy:v:150:y:2018:i:c:p:262-275
    DOI: 10.1016/j.energy.2018.02.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218303645
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.02.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamers, Patrick & Hamelinck, Carlo & Junginger, Martin & Faaij, André, 2011. "International bioenergy trade--A review of past developments in the liquid biofuel market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2655-2676, August.
    2. Lior, Noam, 2008. "Energy resources and use: The present situation and possible paths to the future," Energy, Elsevier, vol. 33(6), pages 842-857.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    2. Konstantin Slyusarsky & Anton Tolokolnikov & Artur Gubin & Albert Kaltaev & Alexander Gorshkov & Askar Asilbekov & Kirill Larionov, 2023. "Ignition and Emission Characteristics of Waste Tires Pyrolysis Char Co-Combustion with Peat and Sawdust," Energies, MDPI, vol. 16(10), pages 1-16, May.
    3. Syrodoy, S.V. & Kuznetsov, G.V. & Gutareva, N.Y. & Purin, M.V., 2020. "Ignition of bio-water-coal fuel drops," Energy, Elsevier, vol. 203(C).
    4. Leontiev, Alexandr & Kichatov, Boris & Korshunov, Alexey & Kiverin, Alexey & Medvetskaya, Natalia & Melnikova, Ksenia, 2018. "Oxidative torrefaction of briquetted birch shavings in the bentonite," Energy, Elsevier, vol. 165(PA), pages 303-313.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bumann, A.A. & Papadokonstantakis, S. & Sugiyama, H. & Fischer, U. & Hungerbühler, K., 2010. "Evaluation and analysis of a proxy indicator for the estimation of gate-to-gate energy consumption in the early process design phases: The case of organic solvent production," Energy, Elsevier, vol. 35(6), pages 2407-2418.
    2. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    3. Dutta, Rohan & Ghosh, Parthasarathi & Chowdhury, Kanchan, 2011. "Customization and validation of a commercial process simulator for dynamic simulation of Helium liquefier," Energy, Elsevier, vol. 36(5), pages 3204-3214.
    4. Rocío Maceiras & Víctor Alfonsín & Luis Seguí & Juan F. González, 2021. "Microwave Assisted Alkaline Pretreatment of Algae Waste in the Production of Cellulosic Bioethanol," Energies, MDPI, vol. 14(18), pages 1-10, September.
    5. Cheng, Wen-Long & Liu, Jian & Nian, Yong-Le & Wang, Chang-Long, 2016. "Enhancing geothermal power generation from abandoned oil wells with thermal reservoirs," Energy, Elsevier, vol. 109(C), pages 537-545.
    6. Ridoan Karim & Mohammad Ershadul Karim & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abu Bakar Munir & Ahmed Imran Kabir & Jorge Alfredo Ardila-Rey & Abdullahi Abubakar Mas’ud, 2018. "Nuclear Energy Development in Bangladesh: A Study of Opportunities and Challenges," Energies, MDPI, vol. 11(7), pages 1-15, June.
    7. Roshan, Gh.R. & Orosa, J.A & Nasrabadi, T., 2012. "Simulation of climate change impact on energy consumption in buildings, case study of Iran," Energy Policy, Elsevier, vol. 49(C), pages 731-739.
    8. Gosens, Jorrit, 2017. "Natural resource endowment is not a strong driver of wind or PV development," Renewable Energy, Elsevier, vol. 113(C), pages 1007-1018.
    9. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    10. Jonker, J.G.G. & Junginger, H.M. & Verstegen, J.A. & Lin, T. & Rodríguez, L.F. & Ting, K.C. & Faaij, A.P.C. & van der Hilst, F., 2016. "Supply chain optimization of sugarcane first generation and eucalyptus second generation ethanol production in Brazil," Applied Energy, Elsevier, vol. 173(C), pages 494-510.
    11. Marc A. Rosen, 2012. "Engineering Sustainability: A Technical Approach to Sustainability," Sustainability, MDPI, vol. 4(9), pages 1-23, September.
    12. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    13. Paniagua, S. & Escudero, L. & Escapa, C. & Coimbra, R.N. & Otero, M. & Calvo, L.F., 2016. "Effect of waste organic amendments on Populus sp biomass production and thermal characteristics," Renewable Energy, Elsevier, vol. 94(C), pages 166-174.
    14. Milazzo, M.F. & Spina, F. & Vinci, A. & Espro, C. & Bart, J.C.J., 2013. "Brassica biodiesels: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 350-389.
    15. Shuit, S.H. & Tan, K.T. & Lee, K.T. & Kamaruddin, A.H., 2009. "Oil palm biomass as a sustainable energy source: A Malaysian case study," Energy, Elsevier, vol. 34(9), pages 1225-1235.
    16. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    17. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    18. Johnson, Neil & Kang, Jian & Hathway, Elizabeth Abigail, 2014. "Acoustics of weirs: Potential implications for micro-hydropower noise," Renewable Energy, Elsevier, vol. 71(C), pages 351-360.
    19. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    20. Khojasteh, Danial & Khojasteh, Davood & Kamali, Reza & Beyene, Asfaw & Iglesias, Gregorio, 2018. "Assessment of renewable energy resources in Iran; with a focus on wave and tidal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2992-3005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:150:y:2018:i:c:p:262-275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.