IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp754-769.html
   My bibliography  Save this article

Human in the loop heterogeneous modelling of thermostatically controlled loads for demand side management studies

Author

Listed:
  • Kleidaras, Alexandros
  • Kiprakis, Aristides E.
  • Thompson, John S.

Abstract

Demand Response (DR) is a Smart Grid technology aiming to provide demand regulation for dynamic pricing and ancillary services to the grid. Thermostatically controlled loads (TCLs) are among those with the highest potential for DR. Some of the challenges in modelling TCLs is the various factors that affect their duty cycle, mainly human behaviour and external conditions, as well as heterogeneity of TCLs (load parameters). These add an element of stochasticity, with detrimental impact on the aggregated level. Most models developed so far use Wiener processes to represent this behaviour, which in aggregated models, such as those based on Coupled Fokker-Planck Equations (CFPE), have a negligible effect as “white noise”. One of the main challenges is modelling the effect of external factors on the state of TCLs' aggregated population and their impact in heterogeneity during operation. Here we show the importance of those factors as well as their detrimental effect in heterogeneity using cold loads as a case study. A bottom up detailed model has been developed starting from thermal modelling to include these factors, real world data was used as input for realistic results. Based on those we found that the duty cycle of some TCLs in the population can change significantly and thus the state of the TCLs' population as a whole. Subsequently, the accuracy of aggregation models assuming relative homogeneity and based on small stochasticity (i.e. Wiener process with typical variance 0.01) is questionable. We anticipate similar realistic models to be used for real world applications and aggregation methods based on them, especially for cold loads and similar TCLs, where external factors and heterogeneity in time are significant. DR control frameworks for TCLs should also be designed with that behaviour in mind and the developed bottom up model can be used to evaluate their accuracy.

Suggested Citation

  • Kleidaras, Alexandros & Kiprakis, Aristides E. & Thompson, John S., 2018. "Human in the loop heterogeneous modelling of thermostatically controlled loads for demand side management studies," Energy, Elsevier, vol. 145(C), pages 754-769.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:754-769
    DOI: 10.1016/j.energy.2017.12.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enrica De Cian & Elisa Lanzi & Roberto Roson, 2007. "The Impact of Temperature Change on Energy Demand: A Dynamic Panel Analysis," Working Papers 2007.46, Fondazione Eni Enrico Mattei.
    2. Masjuki, H.H & Saidur, R & Choudhury, I.A & Mahlia, T.M.I & Ghani, A.K & Maleque, M.A, 2001. "The applicability of ISO household refrigerator–freezer energy test specifications in Malaysia," Energy, Elsevier, vol. 26(7), pages 723-737.
    3. Lakshmanan, Venkatachalam & Marinelli, Mattia & Hu, Junjie & Bindner, Henrik W., 2016. "Provision of secondary frequency control via demand response activation on thermostatically controlled loads: Solutions and experiences from Denmark," Applied Energy, Elsevier, vol. 173(C), pages 470-480.
    4. Wang, D. & Parkinson, S. & Miao, W. & Jia, H. & Crawford, C. & Djilali, N., 2013. "Hierarchical market integration of responsive loads as spinning reserve," Applied Energy, Elsevier, vol. 104(C), pages 229-238.
    5. Hasanuzzaman, M. & Saidur, R. & Masjuki, H.H., 2009. "Effects of operating variables on heat transfer and energy consumption of a household refrigerator-freezer during closed door operation," Energy, Elsevier, vol. 34(2), pages 196-198.
    6. Woo, C.K. & Kollman, E. & Orans, R. & Price, S. & Horii, B., 2008. "Now that California has AMI, what can the state do with it?," Energy Policy, Elsevier, vol. 36(4), pages 1366-1374, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquín Garrido-Zafra & Antonio Moreno-Munoz & Aurora Gil-de-Castro & Emilio J. Palacios-Garcia & Carlos D. Moreno-Moreno & Tomás Morales-Leal, 2019. "A Novel Direct Load Control Testbed for Smart Appliances," Energies, MDPI, vol. 12(17), pages 1-16, August.
    2. Li, Li & Dong, Mi & Song, Dongran & Yang, Jian & Wang, Qibing, 2022. "Distributed and real-time economic dispatch strategy for an islanded microgrid with fair participation of thermostatically controlled loads," Energy, Elsevier, vol. 261(PB).
    3. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    4. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Shu Zhang & Liping Zhou & Dejin Fan & Jie Tang, 2023. "Temperature Regulation Strategy of Heterogeneous Air Conditioning Loads for Renewable Energy Consumption," Energies, MDPI, vol. 16(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan M. Belman-Flores & Diana Pardo-Cely & Miguel A. Gómez-Martínez & Iván Hernández-Pérez & David A. Rodríguez-Valderrama & Yonathan Heredia-Aricapa, 2019. "Thermal and Energy Evaluation of a Domestic Refrigerator under the Influence of the Thermal Load," Energies, MDPI, vol. 12(3), pages 1-16, January.
    2. Moore, J. & Woo, C.K. & Horii, B. & Price, S. & Olson, A., 2010. "Estimating the option value of a non-firm electricity tariff," Energy, Elsevier, vol. 35(4), pages 1609-1614.
    3. Dong, Jun & Xue, Guiyuan & Li, Rong, 2016. "Demand response in China: Regulations, pilot projects and recommendations – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 13-27.
    4. Eboli, Fabio & Parrado, Ramiro & Roson, Roberto, 2010. "Climate-change feedback on economic growth: explorations with a dynamic general equilibrium model," Environment and Development Economics, Cambridge University Press, vol. 15(5), pages 515-533, October.
    5. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    6. Yushchenko, Alisa & Patel, Martin Kumar, 2017. "Cost-effectiveness of energy efficiency programs: How to better understand and improve from multiple stakeholder perspectives?," Energy Policy, Elsevier, vol. 108(C), pages 538-550.
    7. Monika Wieczorek-Kosmala, 2020. "Weather Risk Management in Energy Sector: The Polish Case," Energies, MDPI, vol. 13(4), pages 1-21, February.
    8. Woo, C.K. & Ho, T. & Shiu, A. & Cheng, Y.S. & Horowitz, I. & Wang, J., 2014. "Residential outage cost estimation: Hong Kong," Energy Policy, Elsevier, vol. 72(C), pages 204-210.
    9. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    10. Shardul Agrawala & Francesco Bosello & Carlo Carraro & Kelly De Bruin & Enrica De Cian & Rob Dellink & Elisa Lanzi, 2011. "Plan Or React? Analysis Of Adaptation Costs And Benefits Using Integrated Assessment Models," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 175-208.
    11. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    12. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    13. Brown, D.P. & Tsai, C.H. & Woo, C.K. & Zarnikau, J. & Zhu, S., 2020. "Residential electricity pricing in Texas's competitive retail market," Energy Economics, Elsevier, vol. 92(C).
    14. Xia, Mingchao & Song, Yuguang & Chen, Qifang, 2019. "Hierarchical control of thermostatically controlled loads oriented smart buildings," Applied Energy, Elsevier, vol. 254(C).
    15. Faruqui, A. & Hajos, A. & Hledik, R.M. & Newell, S.A., 2010. "Fostering economic demand response in the Midwest ISO," Energy, Elsevier, vol. 35(4), pages 1544-1552.
    16. DeBenedictis, A. & Hoff, T.E. & Price, S. & Woo, C.K., 2010. "Statistically adjusted engineering (SAE) modeling of metered roof-top photovoltaic (PV) output: California evidence," Energy, Elsevier, vol. 35(10), pages 4178-4183.
    17. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    18. Woo, C.K. & Olson, A. & Chen, Y. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Does California's CO2 price affect wholesale electricity prices in the Western U.S.A.?," Energy Policy, Elsevier, vol. 110(C), pages 9-19.
    19. Tan, Zhongfu & Wang, Guan & Ju, Liwei & Tan, Qingkun & Yang, Wenhai, 2017. "Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand r," Energy, Elsevier, vol. 124(C), pages 198-213.
    20. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:754-769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.