IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v138y2017icp500-508.html
   My bibliography  Save this article

A comparative analysis of wave power in the nearshore by WAM estimates and in-situ (AWAC) measurements. The case study of Varkiza, Athens, Greece

Author

Listed:
  • Foteinis, S.
  • Hancock, J.
  • Mazarakis, N.
  • Tsoutsos, T.
  • Synolakis, C.E.

Abstract

The wave energy potential in the Mediterranean has been estimated using numerical models. However, the veracity of these estimates in the nearshore, where wave energy harnessing is likely to take place, remains largely unknown. This paper compares measured wave data (AWAC/ADCP) with estimates of the third-generation spectral WAve Model (WAM), in Varkiza, Athens, a typical south facing nearshore Greek locale. Overall, good agreement in the mean wave power (Pmean) was found, but WAM overestimated the peak Pmax and had an overall error of ∼19° when estimating the mean wave direction (Mdir). The results are suggestive that WAM could act as a screening tool to identify nearshore wave energy hotspots and avoid areas with extreme sea states. Nonetheless, in-situ wave measurements are required to determine the wave energy power potential and the direction of wave propagation so as to select the appropriate conversion technology that better fits local conditions. Finally, it is suggested that existing wave energy technology should be, redesigned, downscaled and optimized to suit the milder Mediterranean wave regime, thus enacting wave energy development in Greece.

Suggested Citation

  • Foteinis, S. & Hancock, J. & Mazarakis, N. & Tsoutsos, T. & Synolakis, C.E., 2017. "A comparative analysis of wave power in the nearshore by WAM estimates and in-situ (AWAC) measurements. The case study of Varkiza, Athens, Greece," Energy, Elsevier, vol. 138(C), pages 500-508.
  • Handle: RePEc:eee:energy:v:138:y:2017:i:c:p:500-508
    DOI: 10.1016/j.energy.2017.07.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217312380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.07.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carballo, R. & Sánchez, M. & Ramos, V. & Taveira-Pinto, F. & Iglesias, G., 2014. "A high resolution geospatial database for wave energy exploitation," Energy, Elsevier, vol. 68(C), pages 572-583.
    2. Veigas, M. & López, M. & Iglesias, G., 2014. "Assessing the optimal location for a shoreline wave energy converter," Applied Energy, Elsevier, vol. 132(C), pages 404-411.
    3. Jadidoleslam, Navid & Özger, Mehmet & Ağıralioğlu, Necati, 2016. "Wave power potential assessment of Aegean Sea with an integrated 15-year data," Renewable Energy, Elsevier, vol. 86(C), pages 1045-1059.
    4. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    5. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    6. Silva, Dina & Bento, A. Rute & Martinho, Paulo & Guedes Soares, C., 2015. "High resolution local wave energy modelling in the Iberian Peninsula," Energy, Elsevier, vol. 91(C), pages 1099-1112.
    7. Zodiatis, George & Galanis, George & Nikolaidis, Andreas & Kalogeri, Christina & Hayes, Dan & Georgiou, Georgios C. & Chu, Peter C. & Kallos, George, 2014. "Wave energy potential in the Eastern Mediterranean Levantine Basin. An integrated 10-year study," Renewable Energy, Elsevier, vol. 69(C), pages 311-323.
    8. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    9. Foteinis, S. & Tsoutsos, T., 2017. "Strategies to improve sustainability and offset the initial high capital expenditure of wave energy converters (WECs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 775-785.
    10. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    11. Folley, M. & Whittaker, T.J.T., 2009. "Analysis of the nearshore wave energy resource," Renewable Energy, Elsevier, vol. 34(7), pages 1709-1715.
    12. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    13. López-Ruiz, Alejandro & Bergillos, Rafael J. & Ortega-Sánchez, Miguel, 2016. "The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation," Applied Energy, Elsevier, vol. 182(C), pages 191-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    2. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "Economic-financial modeling for marine current harnessing projects," Energy, Elsevier, vol. 158(C), pages 859-880.
    3. Katsaprakakis, Dimitris Al & Voumvoulakis, Manolis, 2018. "A hybrid power plant towards 100% energy autonomy for the island of Sifnos, Greece. Perspectives created from energy cooperatives," Energy, Elsevier, vol. 161(C), pages 680-698.
    4. del Horno, L. & Segura, E. & Morales, R. & Somolinos, J.A., 2020. "Exhaustive closed loop behavior of an one degree of freedom first-generation device for harnessing energy from marine currents," Applied Energy, Elsevier, vol. 276(C).
    5. Choupin, Ophelie & Del Río-Gamero, B. & Schallenberg-Rodríguez, Julieta & Yánez-Rosales, Pablo, 2022. "Integration of assessment-methods for wave renewable energy: Resource and installation feasibility," Renewable Energy, Elsevier, vol. 185(C), pages 455-482.
    6. Zou, Shangyan & Robertson, Bryson & Paudel, Sanjaya, 2023. "Geospatial Analysis of Technical U.S. Wave Net Power Potential," Renewable Energy, Elsevier, vol. 210(C), pages 725-736.
    7. Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masoud, Alaa A., 2022. "On the Nile Fan's wave power potential and controlling factors integrating spectral and geostatistical techniques," Renewable Energy, Elsevier, vol. 196(C), pages 921-945.
    2. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    3. Evangelia Dialyna & Theocharis Tsoutsos, 2021. "Wave Energy in the Mediterranean Sea: Resource Assessment, Deployed WECs and Prospects," Energies, MDPI, vol. 14(16), pages 1-18, August.
    4. Gonçalves, Marta & Martinho, Paulo & Guedes Soares, C., 2018. "A 33-year hindcast on wave energy assessment in the western French coast," Energy, Elsevier, vol. 165(PB), pages 790-801.
    5. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    6. Blažauskas, Nerijus & Pašilis, Aleksas & Knolis, Audrius, 2015. "Potential applications for small scale wave energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 297-305.
    7. Lin, Yifan & Dong, Sheng & Wang, Zhifeng & Guedes Soares, C., 2019. "Wave energy assessment in the China adjacent seas on the basis of a 20-year SWAN simulation with unstructured grids," Renewable Energy, Elsevier, vol. 136(C), pages 275-295.
    8. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    9. Ribeiro, A.S. & deCastro, M. & Costoya, X. & Rusu, Liliana & Dias, J.M. & Gomez-Gesteira, M., 2021. "A Delphi method to classify wave energy resource for the 21st century: Application to the NW Iberian Peninsula," Energy, Elsevier, vol. 235(C).
    10. Silva, Dina & Martinho, Paulo & Guedes Soares, C., 2018. "Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast," Renewable Energy, Elsevier, vol. 127(C), pages 1064-1075.
    11. Egidijus Kasiulis & Jens Peter Kofoed & Arvydas Povilaitis & Algirdas Radzevičius, 2017. "Spatial Distribution of the Baltic Sea Near-Shore Wave Power Potential along the Coast of Klaipėda, Lithuania," Energies, MDPI, vol. 10(12), pages 1-18, December.
    12. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    13. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    14. Xu, Sheng & Wang, Shan & Guedes Soares, C., 2019. "Review of mooring design for floating wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 595-621.
    15. Abanades, J. & Greaves, D. & Iglesias, G., 2015. "Coastal defence using wave farms: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 75(C), pages 572-582.
    16. Eugen Rusu, 2018. "Numerical Modeling of the Wave Energy Propagation in the Iberian Nearshore," Energies, MDPI, vol. 11(4), pages 1-18, April.
    17. Kamranzad, Bahareh & Hadadpour, Sanaz, 2020. "A multi-criteria approach for selection of wave energy converter/location," Energy, Elsevier, vol. 204(C).
    18. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    19. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    20. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:138:y:2017:i:c:p:500-508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.